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Preface

Welcome to the Experimental Design and ANOVA section of STA2020.

This book is not an exhaustive guide to designing experiments or conducting
ANOVA. Instead, it has been tailored specifically to align with the learning
outcomes and methods covered in STA2020.

This module consists of four main sections:

1. Experimental Design
2. Completely Randomized Designs
3. Randomized Complete Block Designs
4. Factorial Experiments

The first two chapters lay the groundwork for the module. Once you grasp these
concepts, the remaining sections should be easier to follow. Before diving into
these topics, there are two preliminary sections:

1. A brief introduction to statistical modeling
2. A guide to hypothesis testing

I encourage you to read through these first, as they provide essential context for
the rest of the material.

Throughout the book, you will find R code presented in chunks like this:
x <- c(1,2,3,4,5)
mean(x) # Computes the mean of a set of numbers

[1] 3

R is consistently used to visualize, illustrate, and demonstrate key methods and
concepts. Running the code yourself will greatly enhance your understanding,
so I encourage you to do so.

Some parts of these notes have been adapted from the STA1007
notes, authored by Dr. Res Altwegg and Dr. Birgit Erni, as well as
from various textbooks.
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Statistical Modelling

What is a Model?
A statistical model is a mathematical representation of how data is generated.
It describes the relationship between observed data and underlying factors (pa-
rameters) while accounting for random variation. Suppose that we are interested
in estimating the age of a tree from its stem diameter. To do this we need to
know by how much the stem diameter increases per year. We could describe
this relationship or process as follows:

𝐷 = 𝛼 + 𝛽 × 𝐴𝑔𝑒
describing a linear increase of diameter with age. Once we have a good idea of
how fast diameter increases with age (�) we can predict diameter from age. The
(mathematical) model above is a very simple representation of this process with
only two parameters, the intercept and the growth rate.

With the chosen parameter values, diameter increases linearly with age. Of
course, this model is not realistic except for special situations but it gives us
powerful insights. In reality we don’t know 𝛽, but usually need to estimate it
from data. Also, not every tree grows equally fast, because of environmental and
individual differences between trees. We can accept that the above is a simple
model for the average behaviour of a tree, but to capture variability between
trees (because of variability between environmental conditions from tree to tree,
variability between individual trees, measurement error), we add an error term.

𝐷 = 𝛼 + 𝛽 × 𝐴𝑔𝑒𝑖 + 𝑒𝑖

The response that we observe is then described by an average behaviour, but
the actual observed value will vary around this average. To summarise, the
statistical model has a stochastic component which captures variability in the
response that cannot be explained by the deterministic part of the model. An-
other distinguishing feature of statistical modelling is that we obtain estimates
of the parameter values from the data, e.g. by fitting a line to the observations,
i.e. we learn from data.

3



4 Statistical Modelling

More generally
Statistical models are not perfect predictors of the data, rather they attempt
to describe the “central tendency” of the observations. To get to the actual ob-
served value some deviation from the central tendency needs to added (i.e. error).
Such models typically have the following the form:

Observed Response = Model Predicted Response + Error

Mathematically this can be stated as:

𝑌 = ̂𝑌 + 𝑒

A simple example of a statistical model you may have encountered is the mean
as a predictor. Suppose you measure the number of customers entering two
stores over 20 days. The observed counts for each store fluctuate daily, but you
may want to summarize the data using the average number of customers.

For each store 𝑖, a basic statistical model for these observations would be:

𝑌𝑖𝑗 = 𝜇𝑖 + 𝑒𝑖𝑗

where:

• 𝑌𝑖𝑗 is the number of customers observed on day 𝑗 at store 1,
• 𝜇𝑖 is the true mean number of customers at store 𝑖,
• 𝑒𝑖𝑗 is the error term, representing deviations from the mean.

The error term 𝑒𝑖𝑗 accounts for day-to-day fluctuations that cause the actual
number of customers to vary around the mean. Below this data is simulated and
plotted, with the model overlain. The black line is the mean and the red dashed
line represents the error for one observation, i.e. deviation from the fitted model
response, in this case the mean.
store1 <- rpois(20, 50)
store2 <- rpois(20, 15)
storedata <- data.frame(numcust = c(store1, store2),

store = factor(rep(c("Store 1", "Store 2"), each = 20)))

stripchart(numcust ~ store, data = storedata,
method = "jitter", pch = 16, col = c("deepskyblue", "orange"),
vertical = TRUE, main = "Customer Counts per Store",
xlab = "Store", ylab = "Number of Customers")

means <- tapply(storedata$numcust, storedata$store, mean)
segments(x0 = 1:2- 0.1, x1 = 1:2 + 0.1, y0 = means, y1 = means, lwd = 3, col = "black")
min_count <- min(storedata$numcust[storedata$store == "Store 1"])
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min_x <- jitter(rep(1, sum(storedata$numcust == min_count)))
points(min_x, min_count, col = "red", pch = 16, cex = 1.2)
segments(x0 = min_x, x1 = min_x, y0 = min_count, y1 = means["Store 1"], col = "red", lwd = 2, lty = 2)

Store 1 Store 2

10
30

50

Customer Counts per Store

Store

N
um

be
r 

of
 C

us
to

m
er

s

Another basic example of this structure is a linear regression model:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑒𝑖

where:

• 𝑌𝑖 is the observed response,
• 𝛽0 and 𝛽1 are unknown parameters representing the intercept and slope,
• 𝑋𝑖 is the predictor variable,
• 𝑒𝑖 is the random error term.

# Generate random x values and error term
set.seed(123) # Ensures reproducibility
x <- rnorm(35, mean = 35, sd = 5)
error <- rnorm(35, mean = 0, sd = 5)

# Define true model parameters
beta0 <- 2
beta1 <- 1.5

# Generate y values based on the regression model
y <- beta0 + beta1 * x + error



6 Statistical Modelling

# Fit a linear regression model
model <- lm(y ~ x) # This was missing!

# Select an observation to highlight
obs_index <- 20
x_obs <- x[obs_index]
y_obs <- y[obs_index]
y_pred <- predict(model, newdata = data.frame(x = x_obs))

# Scatter plot of data points
plot(x, y, pch = 16, col = "darkseagreen",

xlab = "X", ylab = "Y",
main = "Scatter Plot with Regression Line",
cex.lab = 1.5, cex.axis = 1.2, cex.main = 1.5)

# Add regression line
abline(model, col = "black", lwd = 2)

# Highlight the observed point
points(x_obs, y_obs, col = "red", pch = 16, cex = 1.2)

# Draw a dashed vertical line from the predicted value to the observed value
segments(x0 = x_obs, x1 = x_obs, y0 = y_pred, y1 = y_obs, col = "red", lwd = 2, lty = 2)
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Notation
When we fit the model to our data, we estimate the unknown parameters using
observed data. We denote these estimates using hat notation to distinguish
them from the true (but unknown) population parameters:

̂𝛽0, ̂𝛽1

Similarly, the fitted values (model-predicted responses) are denoted as:

̂𝑌𝑖 = ̂𝛽0 + ̂𝛽1𝑋𝑖.

Thus, after fitting the model, the observed response can be rewritten as:

𝑌𝑖 = ( ̂𝛽0 + ̂𝛽1𝑋𝑖) + 𝑒𝑖 = ̂𝑌𝑖 + 𝑒𝑖

where:

• ̂𝑌𝑖 is the fitted (predicted) value, and
• 𝑒𝑖 = 𝑌𝑖 − ̂𝑌𝑖 is the residual, representing the difference between the

observed and predicted values.
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A brief guideline to
hypothesis testing

These notes have been adapted from the STA1007 notes (authored
by Dr Res Altwegg and Dr Greg Distiller and some other textbooks.

Hypothesis testing is a statistical procedure of using sample data to make in-
ferences about populations. Unlike estimation, where the goal is to quantify a
parameter, hypothesis testing assesses whether an observed effect is statistically
significant. More specifically, a hypothesis test evaluates two mutually exclu-
sive statements about the population and determines which statement the data
supports.

The General Framework
Hypothesis testing follows a structured process:

1. State the Hypotheses: Define the null hypothesis (H�) and the alterna-
tive hypothesis (H�).

The basic idea of hypothesis testing is that we set up a so-called null hypothesis
and then ask how likely our data are if the null hypothesis were true. If they are
unlikely, we conclude that we have found evidence against the null hypothesis,
i.e. the null hypothesis is probably not true.

The alternative hypothesis covers all the possibilities not covered by the null
hypothesis. If we conclude that the null hypothesis is probably not true, that
means that the alternative hypothesis is probably true. These two hypotheses
are not equal in how we treat them:

• We start by assuming the null is true and check if the data gives enough
evidence to reject it.

• If the data strongly contradicts the null, we lean toward the alternative
hypothesis.

But we never prove the alternative hypothesis outright—we only show that the
null is unlikely based on the evidence. You can think of the null hypothesis

9



10 A brief guideline to hypothesis testing

as representing a baseline against which the data are compared, whereas the
alternative hypothesis is what we really care about, worry about or want to
demonstrate. This is an important asymmetry and will need some careful re-
flection.

Below is an example:

Null Hypothesis (𝐻0): “The average weight of chocolate bars is 100g.”

Alternative Hypothesis (𝐻𝐴): “The average weight of chocolate bars is less than
100g.”

Lack of evidence against 𝐻0 is not the same as evidence for 𝐻0. We never say
that we have evidence for 𝐻0 or that we accept 𝐻0 as true.

2. Choose a Test Statistic: Select an appropriate statistic to measure the
observed effect.

A numerical function of the data that quantifies the strength of the observed
effect, whose value determines the result of the test. Examples include the mean
difference, proportion difference, or z-score.

3. Determine the Null Distribution: Establish what the test statistic
would look like if H� were true.

We have a test statistic and to say something about how likely this test statistic
(or more extreme is) under the null hypothesis, we need the null distribution of
the test statistic (that is the sampling distribution of the test statistic as if the
null hypothesis were true). We then compared the observed value of the test
statistic to that null distribution and asked ourselves how unusual it is in light
of that distribution.

4. Compute the P-value: Calculate the probability of obtaining a test
statistic as extreme as the observed one under H�.

The probability of obtaining a result as extreme as the observed one if H� is
true. A small P-value (typically <0.05) suggests strong evidence against (𝐻0).

5. Make a Decision:

In the approach you have been taught, we compare the P-value to a predefined
significance level (�) and conclude whether to reject 𝐻0. Here we would like to
emphasise that the p-value is a measure of evidence against 𝐻0 - see below!

One-Sided vs. Two-Sided Tests
Two-sided test: Tests for deviations in both directions. Example: “The average
human body temperature is different from 37°C.”

One-sided test: Tests for deviations in a single direction. Example: “Students
who study more than an hour score higher.”
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Decision Making in Hypothesis Testing
A small P-value constitutes evidence against 𝐻0. But how small is small enough?
Sometimes, we want to make a firm decision about whether we can believe that
the observed pattern is real or not. This requires us to choose a threshold for
P. This threshold is called the significance level and denoted by 𝛼. If we obtain
a P-value that is smaller than 𝛼, we say that we have obtained a “statistically
significant result” or that “𝐻0 is rejected”. If our P-value is larger than 𝛼, we
say that our result is “not significant” or that “𝐻0 is not rejected”. In most
situations, researchers choose a significance level of 𝛼 = 0.05, which roughly
corresponds to the probability of obtaining five heads in a row when tossing a
fair coin, not a very likely event! Different values for 𝛼 are also sometimes used;
the next most common significance level is 𝛼 = 0.01.

Before we go further, we want to emphasize that there is nothing magic about
a specific value of 𝛼. This threshold is an arbitrary choice and should not be
taken too seriously. There is not much difference between a P-value of 0.051 and
0.049. Both constitute about the same strength of evidence against 𝐻0. Yet,
when we apply 𝛼 = 0.05, we would reach opposite conclusions in the two cases.
It is always better to report the exact P-value rather than just state P > 0.05
or P < 0.05 or state that a result is “not significant” or “significant”. And it is
particularly important not to imply that a “non-significant” result means that
there is no effect (that would be saying 𝐻0 is true when we might in fact have
some evidence against it)!

Alas, dividing results into “significant” vs “not significant” is very entrenched
in many fields and you will encounter these terms a lot. And used wisely, this
distinction can have its merits. So we’ll stick with it.
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Chapter 1

Experiments and
experimental design

There are two fundamental ways to obtain information in research: by obser-
vation or by experimentation. In an observational study the observer watches
and records information about the subject of interest. In an experiment, the
experimenter actively manipulates variables hypothesized to affect the response
(insert small example). Although both are important ways of understanding the
world around us, only through experiments can we infer causality.

That is, by designing and conducting an experiment properly, if we observe a
result such as a change in variable A leads to a change in our response (say
variable B), we can confidently conclude that A caused this change in B. If
we were to merely study variable B and observe that as variable A changes,
B also changes without conducting an experiment, then we can only say that
variable A and B are associated. We could not easily conclude that any change
in B is due to A. It could be some other factor that is correlated with A or
it could be that B caused the change in A! The key is that a well-designed
experiment controls and holds constant (as best we can) all other factors that
might affect the response, so we can be sure the result is caused by the variable
we manipulated.

Imagine a company wants to determine whether their voluntary employee train-
ing program (the explanatory variable) increases productivity (the response).
They decide to track the productivity of employees who chose to complete the
training and those who did not. They note that, on average, trained employees
are more productive. Can we confidently conclude that the training program
caused increased productivity?

This is an observational study since no variable was actively manipulated, they
merely observed and recorded the productivity of two groups of employees. So,

15



16 CHAPTER 1. EXPERIMENTS AND EXPERIMENTAL DESIGN

we cannot conclude that completing the training program increases productivity
- we cannot infer causality. It could be due to many other factors, either observed
or unobserved, such as maybe employees who choose to do the training program
are inherently more motivated and thus productive. Can you think of any other
factors?

If they actively manipulate the explanatory variable, training program, by ran-
domly assigning employees to complete the training program or not and control
other factors by ensuring the employees are as similar as possible accross the
groups (i.e. conducted an experiment). Any differences in productivity between
the two groups could then be ascribed to the training program. If they hap-
pen to find that the employees who were assigned the training program are
more productive, they can confidently say that the program caused increased
productivity (and perhaps make it compulsory for all employees!).

Experimental studies are extremely important in research and in practice. They
are almost the only way in which one can control all factors to such an extent as
to eliminate any other possible explanation for a change in a response other than
the variable actively manipulated. In this course, we only consider experimental
studies and those which aim to compare the effects of a number of treatments
(comparative experiments).

Here are some other reasons for conducting experiments:

1. They are easy to analyse. A well designed experiment results in indepen-
dent estimates of treatment effects which allow us to easily interpret the
effects.

2. Experiments are frequently used to find optimal levels of variables which
will maximise (or minimise) the response. Such experiments can save
enormous amounts of time and money. Imagine trying to find the optimal
settings for producing electricity from coal without proper experimenta-
tion. Such a trial and error process would be extremely costly, wasteful
and time consuming. In a similar vein, what if the fictional company in our
previous example decided to invest a bunch of money in fine-tuning their
training program based solely on the results of an observational study. In
reality though, it turns out that adjusting their hiring process to identify
more keen candidates would have been much more efficient and inexpen-
sive.

3. In an experiment we can choose exactly those settings or treatment lev-
els we are interested in, e.g. we can investigate the effect of different shift
lengths (6, 8 or 9 hours) on employee productivity or test specific price
points (R100, R150, R200) to determine which price maximizes sales or
revenue. We can actively manipulate the variable(s) to the levels we are
interested in.

Experimental studies and their design are fundamental to science, allowing us to
further knowledge and test theories. So lets define them more rigorously. We’ll
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start by introducing some terminology.

Establishing causality through observation is possible, but a bit more dif-
ficult.

Experiments are the most reliable way to establish causation because they
involve direct manipulation of variables and control for other factors that
might influence the outcome. By ensuring that differences in results are
due to the specific factor being studied, experiments help avoid misleading
conclusions caused by external influences or chance associations.
However, in some cases, causation can still be inferred from observational
studies, especially when there is a well-understood relationship between
cause and effect, consistent patterns across different settings, and no plau-
sible alternative explanations. For example, the link between smoking and
lung cancer was established through observational data, where researchers
accounted for other possible influences and found strong, consistent evi-
dence that smoking increases cancer risk. While experiments are preferred,
careful analysis and logical reasoning can sometimes provide enough evi-
dence for causal claims without direct intervention.

Key points
1. Two ways of doing research: observation and expermentation.
2. Experimentation is the path to causality.
3. Experiments actively manipulate variables to isolate their effects on a

response while controlling everything else.
4. We consider comparative experiments where the aim is to compare treat-

ments.
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Chapter 2

Terminology

Treatment factors, treatment levels and treat-
ments:

The treatment factor is the factor or variable that the experimenter actively
manipulates to measure its effect on the response. All factors/variables that
are investigated, controlled, manipulated, thought to influence the response, are
called the treatment factors. They become the explanatory variables (mostly
categorical) in the model. For each treatment factor, we actively choose a set
of levels. For example, the treatment factor “temperature” can have levels 10,
20, and 50°C. If temperature is the only treatment factor in the experiment, the
treatments1 will also be 10, 20, and 50°C.

If we manipulate more than one factor (e.g., temperature and pressure), we have
two treatment factors. When several treatment factors are manipulated, the
experiment is called factorial and the treatments are all possible combinations
of the factor levels. If we have pressure levels “low” and “high,” there are 6
treatments in total:

1The terminology of treatments can be traced back to 1920’s when it was first applied by
Ronald Fisher in the agricultural sciences. He is often refered to as the Founder of Statistics!
Have a look at the very first application of ANOVA here and also a nice article describing the
history of statistics and his contribution to the field.

19

https://www.cambridge.org/core/journals/journal-of-agricultural-science/article/abs/studies-in-crop-variation-i-an-examination-of-the-yield-of-dressed-grain-from-broadbalk/882CB236D1EC608B1A6C74CA96F82CC3
https://www.jstor.org/stable/2245989


20 CHAPTER 2. TERMINOLOGY

10, Low

20, Low

50, Low

10, High

20, High

50, High

10

20

50

Low High

Pressure (Treatment Factor 2)

Te
m

pe
ra

tu
re

 (
Tr

ea
tm

en
t F

ac
to

r 
1)

Figure 2.1: Visualization of how treatments are formed as combinations of treat-
ment levels.

In the figure above, there are two treatment factors: Temperature (on the y-
axis) and Pressure (on the x-axis). The axis ticks represent the levels of each
treatment factor, and the blocks within the grid represent the treatments, which
are specific combinations of the levels of Temperature and Pressure. Each treat-
ment is labeled with the corresponding combination of levels (e.g., ‘50, Low’ or
‘10, High’).

Example 1

Three groups of students, 5 in each group, were receiving therapy for severe
test anxiety. Group 1 received 5 hours, group 2 received 10 hours and
group 3 received 15 hours. At the end of therapy each subject completed
an evaluation of test anxiety. Did the amount of therapy have an effect
on the level of test anxiety?
The three groups of students received the scores on the Test Anxiety index
(TAI) at the end of treatment shown in the table below.

Group 1 Group 2 Group 3
48 55 51
50 52 52
53 53 50
52 55 53
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50 53 50

When faced with a text like this, it is useful to identify the treatment factors,
their levels and the treatments, as well the response. Clearly, from the question,
we are interested in the effect of therapy on test anxiety. A statement like
this can generally be read as the effect of the treatment factor on the response.
Nowhere is another treatment factor mentioned, so we only have one in this
example. What are the levels of therapy we set? The levels are 5, 10 and 15
hours of therapy and since we only have one factor these are also the treatments.
Let’s summarise this as follows:

• Response: Test Anxiety

• Treatment Factor: Therapy

• Treatment Levels: 5, 10, and 15 hours of therapy

• Treatments: 5, 10, and 15

Experimental and observational unit
The experimental unit is the entity (e.g. material, object, or individual) to
which a treatment is assigned or that receives the treatment. By contrast, the
observational unit is the entity from which the response is recorded. This
distinction is very important because it is the experimental units which deter-
mine how often the treatment has been replicated and therefore the precision
with which we can measure the treatment effect. In the methods that we cover
in this course, we require that in the end there is only one ‘observation’ (re-
sponse value) per experimental unit. If several measurements have been taken
on an experimental unit, we will combine these into one observation, typically
by taking the mean. Very often, the experimental unit is also the observational
unit.

What are the experimental units? To determine this, revisit the text of Exam-
ple 1 and ask yourself: what entity received the treatments or to what were
treatments applied? Most of you, will probably answer the students and this
is correct. Each student received the respective treatment (number of hours in
therapy) assigned to their group and so there are 5 × 3 = 15 experimental units.

There is an argument to be made that it is not clear whether the students
received therapy on their own or that the groups of students received therapy
together. In that case, treatments were applied to groups of students and so
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there would be three experimental units. This will usually be clear from the
text, but we’ll use this scenario to illustrate some concepts as we go.

We also need to know what the observational units are. The text states that
at the end of therapy, each student completed an evaluation to determine their
level of test anxiety. So the response, test anxiety, was measured on the student
level which means students are the observational units. In the first scenario,
the students are both the experimental units and observational units. But this
would not be the case if groups are the experimental unit.

We also require that there is only one observation per experimental unit, the first
scenario meets this requirement. For the second scenario, we have 5 observations
per group and so we would have to take the mean of these values to end up with
one response value per group.

Let’s add to the summary assuming students are the experimental units:

• Experimental unit (no): Student (15)

• Observational unit (no): Student (15)

Homogeneity of experimental units
When the set of experimental units are as similar as possible such that there are
no distinguishable differences between them, they are said to be homogeneous
(a fancy word for saying they are of the same kind). The more homogeneous the
units are, the smaller the experimental error variance (natural variation between
between observations of the same treatments) will be. It is super important to
have fairly homogeneous units because it allows us to detect differences between
treatments more easily.

Blocking
If the experimental units are not fairly similar but are heterogeneous (the oppo-
site of homogeneous), we can group them into sets of similar units. This process
is called blocking and the groups are considered “blocks”. We compare the
treatments within each block as if each block is its own mini-experiment. This
way we account for the differences between blocks and can better isolate the
effect of the treatments.

Example 2

Imagine you’re testing the effectiveness of two marketing strategies (A
and B) to increase sales at a chain of coffee shops. The coffee shops are
located in different neighborhoods, where factors like income levels might
influence sales. To prevent these differences from skewing the results, you
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group the coffee shops into “blocks” based on neighborhood characteristics
such as income level (e.g., low, medium, high).
Within each block, you randomly assign coffee shops to either Strategy A
or Strategy B. This approach allows you to compare the strategies while
controlling for variability caused by differences in neighborhood features.
Without blocking, would you be able to confidently attribute differences
in sales to the strategies alone? Likely not, as any observed differences
could be due to neighborhood-specific factors rather than the strategies
themselves.

Replication and pseudoreplication
If a treatment is applied independently to more than one experimental unit it is
said to be replicated. Treatments must be replicated! Making more than one
observation on the same experimental unit is not replication, but pseudoreplica-
tion. Pseudoreplication is a common fallacy. The problem is that without true
replication, we don’t have an estimate of uncertainty, of how repeatable, or how
variable the result is if the same treatment were to be applied repeatedly.

In Example 1, if experimental units were the groups and we didn’t take the
average of the observations per group, we would have pseudoreplication as each
student would not be an independent replicate of a treatment - effectively, we
have only applied each treatment once. You might notice that we then only
have one true replicate per treatment group and this is problematic. To get an
estimate of uncertainty, we would have to repeat this experiment a few more
times to get more than one proper replicate.

The first scenario, however, did not have this problem and each treatment was
replicated five times. After going through all this, we have the following sum-
mary:

• Response: Test Anxiety

• Treatment Factor: Therapy

• Treatment Levels: 5, 10, and 15 hours of therapy

• Treatments: 5, 10, and 15

• Experimental unit (no): Student (15)

• Observational unit (no): Student (15)

• Replicates: 5
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Tip

Creating a summary like this, is a handy exercise for any experiment you
come across, and we’ll keep doing it for every experiment in this book. As
we go along, we’ll also add information about the type of experiment that
was conducted.



The three R’s of
experimental design

Experimental Design is a detailed procedure for grouping, if blocking is nec-
essary, experimental units and for how treatments are assigned to the experi-
mental units. There are three fundamental principles, known as the ‘three R’s
of experimental design’ which are at the core of a good experiment. The follow-
ing section might feel a bit repetitive, but these concepts cannot be emphasised
enough.

Replication
Let’s define it again: replication is when each treatment is applied to several
experimental units. This ensures that the variation between two or more units
receiving the same treatment can be estimated and valid comparisons can be
made between treatments. In other words, replication allows us to separate
variation due to differences between treatments from variation within treat-
ments. For true replication, each treatment should be independently applied
to several experimental units. If this is not the case, treatment effects become
confounded with other factors.

Confounding means that is not possible to separate the effects of two (or more)
factors on the response, i.e. it is not possible to say which of the two factors
is responsible for any changes in the response. This is what happened in the
Example 1 when groups are the experimental units. With only one replicate
per treatment, the effect of therapy is confounded with the experimental unit
or the effect of group on test anxiety. The reason why this is a problem is that
any difference between the treatments could be due to any differences between
the groups and not just the number of therapy hours. The same would be true
if we only had one student per group. Why? Take a moment to think about
this.

Consider the first row of the data from Example 1. It looks like the student in
group 2 scored the highest, followed by group 3 and then group 1. So does longer
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therapy sessions lead to higher test anxiety? Likely not! With only one student
per treatment, we are not able to say that any differences in the response are due
to the treatments. It could be due to any differences between the individuals.
Maybe the student in group 3 tends to score higher on anxiety tests regardless
of the treatment, or perhaps the student in group 1 was unusually calm that
day. Without replication, these individual differences could mask (or mimic)
the true effects of the treatments.

By replicating the treatments across multiple students, we can average out these
individual differences and gain a clearer picture of whether therapy duration
truly impacts test anxiety. With five students per group, we might observe that
group 1 consistently scores lower than group 3. This consistency would provide
stronger evidence that the treatments, and not just individual variation, are
responsible for the observed differences. So by replication, we can compare
within treatment variation to variation between treatments.

Treatment 1 Treatment 2 Treatment 3
48 55 51
50 52 52
53 53 50
52 55 53
50 53 50

Randomisation
Randomisation refers to the process of randomly assigning treatments to exper-
imental units such that each experimental unit has equal chance of receiving a
specific treatment. Randomisation ensures that:

1. There is no bias on the part of the experimenter, either conscious or un-
conscious, when assigning treatments to experimental units.

2. No experimental unit is favored to receive a particular treatment.

3. Possible differences between units are equally distributed among treat-
ments. If there are clear differences between units, then blocking should
be performed and randomisation occurs within blocks. We’ll talk more
about this when we encounter Randomised Block Designs.

4. We can assume independence between observations.

Randomisation is not haphazard. In statistics (and here in the context of exper-
imental design), randomisation has a specific meaning: namely that each exper-
imental unit has the same chance of being allocated any of the treatments. This
can be done using random number generators such as with software packages,
dice or drawing number from a hat (provided the number have been shuffled
adequately and have equal chance to be picked).
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Let’s have a look at randomisation in R. Suppose we have 4 treatments (A, B, C,
and D) and 32 experimental units. There are no differences between the units, so
we don’t have to block, and we can equally split the units across the treatments,
which means we have 8 units per treatment, i.e., 8 replicates. In R, we first
create a long vector of 8 As, 8 Bs, 8 Cs, and 8 Ds called all.treat. Then shuffle
the vector to obtain a randomisation using the function sample.
# repeat the vector A, B, C, D 8 times
all.treats <- rep(c("A","B","C","D"), times = 8)

# permutation of all.treats (sample withut replacement)
rand1 <- sample(all.treats)

# example output
rand1

[1] "C" "D" "A" "B" "B" "C" "A" "B" "A" "D" "C" "C" "A" "D" "D" "C" "C" "B" "D"
[20] "C" "C" "B" "B" "A" "B" "D" "D" "B" "A" "A" "A" "D"

Experimental unit 1 recipes the first treatment that appears as the first element
in the shuffled vector, experimental unit 2 receives the second and so on.

Reduction of Unexplained Variation (Blocking)
Unexplained variation (or experimental error variance or within treatment vari-
ance) is largely due to inherent differences between experimental units. The
larger this unexplained variation, the more difficult it becomes to detect treat-
ment differences (a treatment signal). To minimise experimental error variance
we can control extraneous factors (i.e. keeping all else constant) and by choosing
homogeneous experimental units. Otherwise, we can block experimental units
to reduce the variation.

Blocking variables are nuisance factors that might affect your response or intro-
duce systematic variation in the response and we are typically, not interested
in these. Often, they are factors that cannot be randomised, e.g. biological sex
of a person, time of day, location of a warehouse etc. We control the effect of
such variables on the response by blocking for them so that we can investigate
the possible effect of a variable that we are interested in. Usually, in a complete
block experiment, there are as many experimental units per block as there are
treatments, so that each treatment is applied once in every block. Treatments
are randomized to the experimental units in the blocks. We can then compare
the effects of treatments on similar experimental units, and we can estimate the
variation induced in the response due to the differences between blocks. This
variation due to blocks can then be removed from the unexplained variation.

Blocking also offers the opportunity to test treatments over a wider range of
conditions, e.g. if I only use people of one age in my experiment (say students)
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I cannot generalize my results to older people. However, if i use different age
blocks I will be able to tell whether the treatments have similar effects in all age
groups or not.

Lastly, if blocking is not feasible, randomization will ensure that at least treat-
ments and nuisance factors are not confounded.

“Block what you can, randomize what you cannot.”

— Box, Hunter & Hunter (1978)



Chapter 3

Designing an Experiment

When planning an experiment we need to decide on:

• treatment factors and their levels
• the response
• experimental material / units
• blocking factors
• number of replicates

Some of these will be determined by the research question and how experimental
units are assigned to treatments are determined by the design. The design that
will be chosen for a particular experiment depends on the treatment structure
(determined by the research question) and the blocking structure (determined
by the available experimental units).

Here are two ways the treatments can be structured:

1. Single factor: the treatments are the levels of a single treatment factor.
2. Factorial: when more than one factor are of interest, then the experiment

is said to be a factorial experiment. The treatments are constructed by
crossing the treatment factors like we did in Figure 2.1 such that the treat-
ments are all possible combinations of the treatment levels. For example,
if factor A has 𝑎 levels and factor B has 𝑏 levels, there are 𝑎×𝑏 treatments.
Such an experiment would then be called an 𝑎 × 𝑏 factorial experiment.

The blocking structure is determined the set of experimental units chosen or
available for the experiment.are there any structures/differences that need to
be blocked? Do I want to include experimental units of different types to make
the results more general? How many experimental units are available in each
block? For the simplest design in this course, the number of experimental
units in each block corresponds to the number of treatments. This is called a
complete block experiment. There are several other blocking structures, such
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as incomplete blocks and blocks with missing values, all with specific analysis
which we will not cover here.

In this course, we cover two basic designs: Completely Randomized Designs
(CRD) and Randomized Block Designs (RBD). For both designs, the treatment
structure can be single or factorial. Where they differ is in terms of the experi-
mental units and how randomization occurs.

Completely Randomized Designs (CRD)
When all experimental units are fairly homogeneous, a CRD is used. Treatments
are randomized to all experimental units.

Randomized Block Design
This design is used when all experimental units are not homogeneous or blocking
is required to control a nuisance factor. The treatments are randomized to the
units within blocks.



Part II

Single Factor Completely
Randomised Designs
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Chapter 4

Introduction

Completely Randomized Designs (CRDs) are the simplest experimental designs.
They are used when experimental units are uniform enough and we expect
them to react similar to a given treatment. In other words, we have no reason
to suspect that a group of experimental units might react differently to the
treatments. We also don’t expect any effects (besides possibly a treatment
effect) to cause any systematic changes in the response. So, we don’t have to
block for differing experimental units or any nuisance factors.

Remember experimental design is the procedure for how experimental units
are grouped and treatments are applied. We have already said that there are
no blocks in CRDs. So randomisation occurs without restriction and to all
experimental units. More generally, each of the 𝑎 treatments are randomly
assigned to 𝑟 experimental units, such that each experimental unit is equally
likely to receive any of the treatments. This means that there are 𝑁 = 𝑟 × 𝑎
experimental units in total. We only consider designs that are balanced meaning
that there an equal number of experimental units per treatment, i.e. a treatment
is applied to 𝑟 units. The experiment is then said to have 𝑟 replicates.

The aim when analysing CRDs is to determine whether there is an effect of the
treatment factor. We accomplish this by testing for differences in the treatment
means (mean of response values in each treatment) through analyses different
sources of variation in the response. This will become clear as we progress.

4.1 Example: The effect of social media multi-
tasking on classroom performance.

As a student, I used to believe I could multitask effectively. I would scroll
through my phone during lectures, study while texting friends, or listen to
podcast while driving. It felt like I was paying attention to everything, but
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in hindsight, I can barely recall the details of those podcasts. I often had to
revisit lectures or restart study sessions because my focus wasn’t truly there.
This tendency extends beyond student life. In the average workplace, tasks are
frequently interrupted by social media, email checks, or notifications. Many of
us feel the constant pull of our phones when trying to concentrate, whether
we’re working, studying, or even relaxing.

In an era of perceived multitasking, where devices and distractions dominate our
attention, it’s worth asking: Does social media multitasking impact academic
performance of students?

Example 5.1

Two researchers from Turkey, Demirbilek and Talan (2018), conducted a
study to try and answer this question. Specifically, they examined the
impact of social media multitasking during live lectures on students’ aca-
demic performance.
A total of 120 first-year undergraduate students from the same Turkish
University were randomly assigned to one of three groups:

1. Control Group: Students used traditional pen-and-paper note-
taking.

2. Experimental Group 1 (Exp 1): Students engaged in SMS tex-
ting during the lecture.

3. Experimental Group 2 (Exp 2): Students used Facebook during
the lecture.

Over a three-week period, participants attended the same lectures on Mi-
crosoft Excel. To measure academic performance, a standardised test was
administered.

The analysis of experimental data is determined by the design. This
is the first thing we need to investigate. The design dictates the terms that we
will include in our statistical model and so it is crucial to be able to identify the
design and all factors included (blocking and treatment). It is also important
to check that randomisation has been done correctly and determine the number
of replicates used. In the previous chapter we started doing this by creating a
summary of the design and we do the same here. From the description of the
study, it is clear that:

• Response Variable: Academic performance, as measured by test scores.
• Treatment Factor: Level of social media multitasking.
• Treatment Levels (Groups): Control, Exp 1, and Exp 2.

Students were randomly assigned to one of the three groups, and performance
was measured for each individual. Although this may seem obvious, they only
took one measurement per student, so we don’t have to worry about pseudorepli-
cation. This setup indicates that the students are both the experimental units
and the observational units in this study. With a total of 120 experimental
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units and three treatments, the experiment has 40 replicates. Since only one
treatment factor was investigated, and no blocking was performed, this is clas-
sified as a single-factor Completely Randomized Design (CRD). Here is
the study breakdown:

• Response Variable: Academic Performance

• Treatment Factor: Level of Social Media Multitasking

• Treatment Levels: Control, Experimental 1 (SMS), Experimental 2
(Facebook)

• Treatments: Control, Experiment 1, Experiment 2

• Experimental Unit: Student (120)

• Observational Unit: Student (120)

• Replicates: 40 students per group

• Design Type: Single-Factor Completely Randomized Design (CRD)

Before we continue, now is the time to note that we won’t be using the real data
collected in this experiment. It wasn’t available but I have simulated data to
match their results. I’ve also made some other modifications such as the original
study included 122 students but to ensure a balanced design I include only 120.

4.2 Exploratory data analysis (EDA)
Before we start any analyses, we have to conduct some exploratory data analysis
to get a feel for our data. We start by checking whether it has been read in
correctly and then look at some descriptive statistics.

In R, we read in the data set and then use some commands to inspect the data
set:
multitask <- read.csv("Datasets/multitask_performance.csv")
nrow(multitask) # check number of rows

[1] 120
head(multitask) # check first 5 rows

Group Posttest
1 Exp1 86.39427
2 Exp1 64.19996
3 Exp2 52.75394
4 Control 67.81147
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5 Exp1 52.39911
6 Exp1 56.58150
tail(multitask) # check last 5 rows

Group Posttest
115 Control 77.94344
116 Control 63.58444
117 Exp1 55.17758
118 Exp2 67.16150
119 Exp2 32.58373
120 Exp2 49.58119
summary(multitask)

Group Posttest
Length:120 Min. :23.38
Class :character 1st Qu.:52.67
Mode :character Median :65.01

Mean :63.59
3rd Qu.:76.32
Max. :98.78

The data set consists of 120 rows (each row representing a student) and two
columns (Group and Posttest). The first column, Groups, contains the treat-
ment the student was assigned and the Posttest column contains the response
measure. Using the functions head and tail, we can look at the first and last
5 rows and the function summary provides us with a description of each column.
We do this to check that R has read in our data correctly (you can view the
whole data set by running view(multitask) as well). The summary tells us
that the Group column is of the class “character”. For our analysis, we want it
to be read as a factor:
multitask$Group <- as.factor(multitask$Group)
summary(multitask)

Group Posttest
Control:40 Min. :23.38
Exp1 :40 1st Qu.:52.67
Exp2 :40 Median :65.01

Mean :63.59
3rd Qu.:76.32
Max. :98.78

Now, we can see that there are 40 replicates per treatment group, confirming
that the experiment is balanced. I have assumed that, based on the results
shown, that the Posttest scores were recorded as percentages and using the
summary we can quickly check whether there are any observations that are not
on the appropriate scale or might be outliers. Looks good so far!
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4.3 Checking assumptions
Demirbilek and Talan (2018) had several research questions, but here we only
consider the following:

Are there any differences in mean academic performance between the three
groups?

You might think that we could perform three t-tests (Control vs Exp 1, Control
vs Exp 3, Exp 1 vs Exp 2). We could, but the problem with this approach
is what we call multiple testing. When conducting many tests, there is an
increased risk of making a Type 1 Error (rejecting the null hypothesis when it
is in fact true) 1.

When we have more than two groups, we can use a one-way analysis of variance
(ANOVA) which can be seen as an extension of a 𝑡-test and is called “one-way”
because there is a single factor being considered. In the next section, we will
see that ANOVA is a linear model and some of the assumptions are about the
model errors (just like regression):

1. There are no outliers.
2. The errors are independent.
3. The errors are normally distributed.
4. All groups have equal population variances.

We need to check the validity of these assumptions. There are both formal and
informal techniques. Formal techniques (i.e. hypothesis tests) are not always
appropriate for several reasons such as small data sets or that testing one as-
sumption usually requires that the other two hold, complicating the order of
tests. Informal techniques are more than sufficient and in this course, we stick
with them.

Outliers
Outliers are unusual observations (response values) that deviate substantially
from the remaining data points. They can have a large influence on the esti-
mates of our model. Think of statistics such as means and variances, outlying
observations will shift the mean towards them and distort the variability of the
data.

If we’re lucky, outliers are artefacts of data recording or entering issues, such
as a missing decimal points or incorrect scaling (called error outliers). These
types of outliers can be corrected and the analysis can be done as usual. If,

1Can’t remember what a 𝑡-test is and/or need a refresher on hypothesis testing? Have a
look this video on t-tests and document for a brief reminder. Also, a quick (and cool)
sidenote: This study by Chen et al. (2024) used a Completely Randomized Design (CRD),
randomly assigning undergraduate students to playback speed groups (1x, 1.5x, 2x, and 2.5x)
to measure the effect on comprehension of recorded lectures. Using ANOVA they found that
comprehension was preserved up to 2x speed. I personally like to increase the playback speed
to 1.5px if I just need to revise something quickly.
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however, there are freak observations that are not clearly due to anything like
data inputting, then they are likely genuine unusual responses (called interesting
outliers) and should not be discarded. There are many ways of identifying and
dealing with outliers (Aguinis, Gottfredson, and Joo (2013) found 29 different
ways in the literature). Here, it is recommended that the analysis should be run
with and without the outliers to see whether the conclusion depends on their
inclusion. When dealing with outliers, it is best to be transparent and clear
about how they were handled. Simply removing outliers with no explanation is
questionable research practice.

A good way to check for outliers, is to inspect the data visually with a box-plot
of your data grouped by treatment.
boxplot(Posttest ~ Group, data = multitask, col = c("skyblue", "lightgreen", "pink"),

main = "Posttest Scores by Group",
xlab = "Group",
ylab = "Posttest Scores")

stripchart(Posttest~Group, data = multitask, vertical = TRUE, add = TRUE, method = "jitter")
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Figure 4.1: Box-plots of Post treatment scores by group.

The first line of code plots the box-plot and by inputting Posttest~Groups as
the first argument we are say plot the values of Posttest by Groups. There
are extra graphical parameters specified to make the plot look a bit nicer. The
function stripchart is used to overlay the data points. Based on these plots,
there aren’t any obvious outlying observations.



4.3. CHECKING ASSUMPTIONS 39

Equal population variance
The model assumes that population variances in different levels of the treatment
factor are equal. That is, it is assumed in ANOVA that the variance of the
response within each treatment is a separate estimate of the same population
variance.

Since we only have sample data, we would not expect that the sample variances
to be exactly the same. If they are different it does not mean the assumption
is not met. We expect them to differ a bit due to chance simply because we
are sampling. Every time we sample from a population, the data set will be
different and so will it’s variability. The sample variances need to be similar
enough so that our assumption of equal population variance is reasonable.

To check this assumption, we can inspect the box-plots again and compare the
heights. More specifically, we look at the interquartile ranges (IQR). From
looking at the plot, the IQRs do not vary widely. If you prefer to look at the
actual values, we can use R to obtain them:
sort(tapply(multitask$Posttest,multitask$Group,IQR))

Control Exp2 Exp1
14.01068 20.94529 21.97001

Another measure of variability we can look at, are the standard deviations (sd’s).
With the same line of code but just replacing the function we want to apply, we
obtain the sd of each group:
sort(tapply(multitask$Posttest,multitask$Group,sd))

Control Exp1 Exp2
10.82887 14.60601 16.42678

The rule of thumb is to use the ratio of the smallest to largest standard deviation
and check whether it is smaller than five. In our case, the smallest sd (of the
Control group) is about 1.5 times smaller than the largest sd (of the Exp 2
group) which is acceptable.

Normally distributed errors
We can check this assumption by looking at the residuals after model fitting.
A common misconception is to think that the response needs to be normally
distributed. However, it is only the unexplained variation, i.e. the errors or
residuals (estimates of errors), that we assume to be normally distributed. Of
course, if the response has a clearly non-normal distribution (e.g. Binomial),
then the residuals are likely to be non-normal as well. So, we can check our
response values before hand for obvious deviation from normality, but we have
to check this assumption again after fitting our model. Things to look for are
asymmetric box-plots which indicate skew distributions. We also want to check
that the data points tend to cluster around the median. In Figure 4.1, there are
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no signs of any clear deviation from normality. Other graphs we could look at are
histograms or Quantile-Quantile (Q-Q) plots. Q-Q plots show the theoretical
quantiles of the standard normal distribution against the actual quantiles of our
data. We want our data to be as close to the xy line as possible (deviations in
the tails are expected).
par(mfrow = c(1,3))

# First we subset the data for each group
control <- multitask$Posttest[multitask$Group == "Control"]
exp1 <- multitask$Posttest[multitask$Group == "Exp1"]
exp2 <- multitask$Posttest[multitask$Group == "Exp2"]

qqnorm(control, pty = 4, col ="blue", main = "Control")
qqline(control, col = "red")

qqnorm(exp1, pty = 4, col ="blue", main = "Exp 1")
qqline(exp1, col = "red")

qqnorm(exp2, pty = 4, col ="blue", main = "Exp 2")
qqline(exp2, col = "red")
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Figure 4.2: Q-Q plots of response per treatment group.

The qqnorm function plots the theoretical quantiles on the x-axis and the sample
quantile son the y-axis. So each point on the plot corresponds to a quantile from
the sample plotted against the expected quantile from the standard normal
distribution. As a reference we add a straight 45-degree line (in red) using the
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qqline function to indicate what perfect normality would look like.

Independent errors

The assumption is that the errors are independent. While we can check for
certain types of dependence in the residuals after fitting the ANOVA (as we
will see later), dependence among observations generally results in dependent
residuals. Therefore, before fitting any models, we examine the observations
and the experimental design to identify potential violations of independence.

In statistics, if one observation influences another in some way or another, they
are said to be dependent. For the type of data considered here, there are
two types of independence we require. Firstly, observations within treatments
should be independent and second, observations between samples should be in-
dependent. Another way of saying this, is there should be independence
within and among treatments. Depending on the direction of any viola-
tions, the within treatment variance or among treatment variance can either be
deflated or inflated and treatment effects can be biased. This has considerable
impact on the test statistic (F-ratio for ANOVA, more on this later) which could
lead to misleading results. 2

Violations of independence typically occur when the experimental units within
or among treatments are connected in some way. Dependence within a sample
can occurs when they are taken in a non-random sequence. Doing so typically
allows some other variable to introduce dependence between successive observa-
tions. For example, measurement drift (when a tool’s reading gradually changes
over time), physical effects (e.g. temperature) of the location of experimental
units or the experimenter might become better (or worse) at taking the mea-
surement as they move along. If these variables are not taken into account (by
including them as factors in the model), it leads to a lack of independence in
the errors of our model. Specifically, they lead to auto-correlated residuals; ob-
servations made closer together in time or space are more similar to each other
than expected (this is what we check after model fitting).

An informal check we could do, is to plot the data in the order in which they were
collected (if this information is available) whether that is temporally or spatially
to see if any patterns emerge. To do this in R, we can create a Cleveland dot
plot.
dotchart(multitask$Posttest, ylab = "Order of observation", xlab ="Post treatment test score")

2Underwood (1996) has a very detailed explanation of the independence assumption (and
the others) in the context of ANOVA. The book is for ecological experiments, but much of it
pertains to all types of experiments.
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Figure 4.3: Cleveland dot chart of response values in the order in which they
appear in the data set.

We have assumed that the order in which the observations appear in the data set
are the order in which they were recorded. If there were any factors that caused
systematic trends, (i.e. dependence) in the observations, then there would be
some kind of pattern in the dot chart. For our example, there is no clear pattern.
After fitting the model, we can also plot the residuals against spatial coordinate
or against order to check for obvious patterns. This method, however, only
detects violations of independence if observations are related to time or space.

Dependence between treatments can occur if we apply the treatments to the
same group of experimental units or if experimental units from different treat-
ments are able to interact in some way during the experiment. These types of
violations including those mentioned above, are ones that we can mostly prevent
or control by properly designing the experiment. When we control for factors
that might induce dependence, we can include them in our model.

Other reasons for dependence may not be as obvious or easy to eliminate as
we will see below. In the end, they may not have a strong impact on our
estimates but it is important to carefully scrutinize your design and the system
you are studying to identify possible sources of dependence so that these can be
addressed and dealt with properly.

In our example, within and among group dependence could be caused by the
students interacting or influencing each other in some way (by sharing notes for
example). During the lectures, this can be controlled by careful monitoring and
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randomising their position in the lecture theater, but outside of lectures, it is
less easy to control. Here we can argue that if students interacted outside of
lectures the impact on their academic performance (as measured by the test)
would likely be negligible. The integrity of the students is at play. It is not
really possible to diagnose this type of dependence after the fact, only with
careful design and implementation can these be avoided.

It is the onus of the experimenter to design and conduct experiments
that ensure independence. With more thought (and if we’re lucky, funding)
all well-designed experiments should lead to independent data. If violations are
found after the fact, they cannot typically be corrected and then methods that
deal specifically with dependent data (if appropriate) should be used3.

A quick note on the robustness of ANOVA
A statistical procedure is said to be robust to departures from a model assump-
tion if the results remain unbiased even when the assumption is not met. The
robustness of ANOVA is as follows:

1. The assumption of normality is not super crucial. Only severe departures
from normality such as long-tailed distributions or skewed distributions
when sample sizes are unequal and/or small are particularly problematic.

2. Independence within and among groups is extremely important. ANOVA
does not handle dependent data and other analyses should be attempted
if there is dependence.

3. ANOVA is relatively robust to violations of the equal variance assumption
as long as there are no outliers, sample sizes are large and fairly equal
(in the case of unbalanced designs which we do not cover here), and the
sample variances are relatively equal.

4. ANOVA is not very resistant to severely outlying observations either.

Note

1. In this course, you will always encounter data that has already been
collected and the description of the experiment will likely not be
very exhaustive. You might be task then with thinking about how
the assumption of independence could have been violated, but for
the most part we will assume the data are independent, both within
and among samples (unless otherwise stated or you are asked if the
assumption holds).

2. No real data set ever meets all assumptions of a model perfectly.
As the famous (at least in the world of statistics) quote by George

3A few of these methods are repeated measures ANOVA, mixed-models or hierarchical
models.
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Box goes: “All models are wrong but some are useful.” Judging
whether a particular data set meets our assumptions reasonably well
is therefore a bit of an art. You will likely read and hear that being
able to identify violations comes from experience. The best way to
get experience is to look at lots of data sets where you know how well
they meet the assumptions. That’s best done via simulation. We
therefore encourage you to use the attached R code to simulate data
where various assumptions are violated. Run the code a number of
times to get a feeling for how variable your actual sample can be
even if the data generating mechanism doesn’t change. You may
also want to play around with the sample sizes and you can change
the degree to which the assumptions are violated to get a feeling for
how these violations show up in the plots.

4.4 Summary
Completely Randomized Designs (CRDs) are the simplest experimental de-
signs, used when experimental units are uniform and expected to react sim-
ilarly to treatments. Since no nuisance factors are controlled, randomization
occurs without restriction, and treatments are evenly assigned across ex-
perimental units (balanced design).

The social media multitasking study served as an example, where 120 students
were randomly assigned to three groups (Control, SMS, Facebook) to measure
their academic performance. This setup represents a single-factor CRD, where
students are both the experimental and observational units with 40 replicates
per group.

Before conducting ANOVA, we:

• Checked the data set for correct structure (120 observations, treatment
groups as factors).

• Inspected summary statistics and visualized distributions (box-plots, his-
tograms, Q-Q plots).

For ANOVA, the following assumptions were examined:

1. Outliers: Check via box-plots.
2. Equal variance: Assess using interquartile ranges and ratio of sample

standard deviations.
3. Normality of errors: Verified using Q-Q plots.
4. Independence within and between treatment groups: Considered

through study design.

Proper experimental design ensures valid conclusions. Identifying violations of
assumptions early helps prevent biased results.
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A Simple Model for a CRD

To analyse data collected from a Completely Randomised Design we could use
𝑡-tests and compare the samples two at a time. This approach is problematic for
two reasons. Firstly, the test statistic of a 𝑡-test is calculated with a standard
deviation based only on the two samples it considers. We want our test statistic
to consider the variability in all samples collected. Second, when we conduct
multiple tests the overall Type 1 Error rate increases. That is, when doing
many tests, the chance of making at least one wrong conclusion increases with
the number of tests (if you want to know more see the box below). To avoid this,
we will use the ANOVA method which was specifically developed for comparing
multiple means.

Multiple Testing / Comparisons

When we conduct a test, there is always a possibility that a significant
result is due to chance and not actually a real difference. In first year, you
were taught the Neyman-Pearson approach to hypothesis testing, which
entails setting a significance level (𝛼) for the test you will conduct. This
significance level is the Type 1 error rate (probability of falsely rejecting
𝐻0). A common 𝛼 is 0.05, meaning that 5% of the time we will reject the
null hypothesis even if it is true. That means when we find a significant
result, one of two things have happened:

1. Either we genuinely found a significant result or,
2. We were that unlucky, that our result is one of those 5% cases.

We will never know, this is the basis of statistical testing. We accept
that we cannot tell which of our conclusions are Type 1 Errors. When we
conduct many tests, the overall Type 1 Error rate increases. That is the
overall chance of at least one wrong conclusion increases with the number
of tests conducted. This is not good! We already might be wrong 5% and

45
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we don’t want to increase that risk even further when conducting multiple
tests.

5.1 The model
When we collect samples, we usually want to learn something about the popu-
lations from which they were drawn. To do this, we can develop a model for
the observations that reflects the different sources of variation believed to be at
play.

For Completely Randomised Designs, we have 𝑎 treatments which implies 𝑎
population means 𝜇1, 𝜇2, 𝜇3, … , 𝜇𝑎. We are interested in modelling the means
of the treatments and the differences between them. Ultimately we want to test
whether they are equal which we’ll get to in the next section. First, we construct
a simple model for each observation 𝑌𝑖𝑗:

𝑌𝑖𝑗 = 𝜇𝑖 + 𝑒𝑖𝑗,

where

𝑖 = 1, … , 𝑎 (𝑎 = number of treatments)
𝑗 = 1, … , 𝑟 (𝑟 = number of replicates)

𝑌𝑖𝑗 = observation of the 𝑗𝑡ℎ unit receiving treatment 𝑖
𝜇𝑖 = mean of treatment 𝑖
𝑒𝑖𝑗 = random error with 𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎2)

That is, each observation is modeled as the sum of its population mean and some
random variation, 𝑒𝑖𝑗. This random variation represents unexplained differences
between individual observations within the same group and we assume that
these differences follow a normal distribution with mean 0 and constant variance
across all treatment groups. 1

We can change the notation slightly by arbitrarily dividing each mean into a
sum of two components: the overall mean 𝜇 (the mean of the entire data set,
which is the same as the mean of the 𝑎 means2) and the difference between the
population mean and the overall mean. In symbols, this translates to:

1As opposed to non-constant variance across all treatment groups: 𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎2
𝑖 ) where

the 𝜎2
𝑖 ’s are different.

2𝜇 = ∑ 𝜇𝑖
𝑎
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𝜇1 = 𝜇 + (𝜇1 − 𝜇)
𝜇2 = 𝜇 + (𝜇2 − 𝜇)

⋮
𝜇𝑎 = 𝜇 + (𝜇𝑎 − 𝜇)

The difference (𝜇𝑖 − 𝜇) is the effect of treatment 𝑖, denoted by 𝐴𝑖. So each
population mean is the sum of the overall mean and the part that we attribute
to the particular treatment (𝐴𝑖):

𝜇𝑖 = 𝜇 + 𝐴𝑖, 𝑖 = 1, 2, … , 𝑎,

where ∑ 𝐴𝑖 = 0.

Why the ∑ 𝐴𝑖 = 0 constraint?

This constraint ensures that the treatment effects are expressed as devia-
tions from the overall mean. To see why this holds, take the sum of both
sides of the equation:

𝑎
∑
𝑖=1

𝜇𝑖 =
𝑎

∑
𝑖=1

(𝜇 + 𝐴𝑖).

Expanding the right-hand side:
𝑎

∑
𝑖=1

𝜇𝑖 = 𝑎𝜇 +
𝑎

∑
𝑖=1

𝐴𝑖.

By definition, the overall mean 𝜇 is the mean of the treatment means:

𝜇 = 1
𝑎

𝑎
∑
𝑖=1

𝜇𝑖.

Multiplying both sides by 𝑎 gives:
𝑎

∑
𝑖=1

𝜇𝑖 = 𝑎𝜇.

Comparing this with our earlier equation:

𝑎𝜇 = 𝑎𝜇 +
𝑎

∑
𝑖=1

𝐴𝑖.

Subtracting 𝑎𝜇 from both sides, we get:
𝑎

∑
𝑖=1

𝐴𝑖 = 0.
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This constraint is standard in ANOVA models to ensure that the treatment
effects are relative to the overall mean rather than being arbitrarily defined.
It is not an additional assumption; any 𝑎 means can be written in this way.

Replacing 𝜇𝑖 in the model above leads to the common parameterisation of a
single-factor ANOVA model3:

𝑌𝑖𝑗 = 𝜇 + 𝐴𝑖 + 𝑒𝑖𝑗

where

𝑖 = 1, … , 𝑎 (𝑎 = number of treatments)
𝑗 = 1, … , 𝑟 (𝑟 = number of replicates)

𝑌𝑖𝑗 = observation of the 𝑗𝑡ℎ unit receiving treatment 𝑖
𝜇 = overall or general mean

𝐴𝑖 = effect of the 𝑖𝑡ℎ level of treatment factor A
𝑒𝑖𝑗 = random error with 𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎2)

Comparison to regression

If you wanted to, you could rewrite this with the regression notation you’ve
encountered before as a regression model with a single categorical explana-
tory variable:

𝑌𝑖 = 𝛽0 + 𝛽1𝑇 2𝑖 + 𝛽2𝑇 3𝑖 + 𝑒𝑖

where 𝑇 2 and 𝑇 3 are indicator variables (i.e. 𝑇 2 = 1 if observation 𝑖 is
from treatment 2 and 0 otherwise). The intercept estimates the mean of
the baseline category, here it is 𝑇 1.
These two models are equivalent. The data are exactly the same: in both
situations we have 𝑎 groups and we are interested in the mean response
of these groups and the difference between them. The model notation is
just slightly different. In the ANOVA model we use 𝜇 and 𝐴𝑖 instead of
𝛽0 and 𝛽𝑖 which have different meanings.

Regression ANOVA
𝛽0 is the mean of the baseline

category
𝜇 is the overall mean

3Often called Model I.
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𝛽1 is the difference between the
means of category 2 and the

baseline category.

𝐴𝑖 is the effect of treatment 𝑖,
i.e. change in mean response
relative to the overall mean.

When all the explanatory variables are categorical, which is mostly the
case in comparative experimental data, it is more convenient to write the
model in the ANOVA form, for two reasons:

1. The 𝐴𝑖 notation is more concise, because we don’t have to add all
the dummy variables. This makes it easier to read and understand
because there is only one term per factor.

2. Mathematically it is more convenient. In this format all terms are
deviations from a mean. This leads directly to sums of squares4

(squared deviations from a mean) and analysis of variance. We will
see later that we can partition the total sum of squares into one
part for every factor in the model. This allows us to investigate
the variability in the response contributed by every model term (or
factor).

The model can be interpreted as follows:

Each observation, 𝑌𝑖𝑗, is the sum of the overall mean (𝜇), plus the effect of
the treatment it belongs to (𝐴𝑖), and some random error (𝑒𝑖𝑗). We use two
subscripts on the 𝑌 . One to identify the group (treatment) and the other to
identify the subject (experimental unit) within the group:

𝑌1𝑗 = 𝜇 + 𝐴1 + 𝑒1𝑗
𝑌2𝑗 = 𝜇 + 𝐴2 + 𝑒2𝑗
𝑌3𝑗 = 𝜇 + 𝐴3 + 𝑒3𝑗

⋮
𝑌𝑎𝑗 = 𝜇 + 𝐴𝑎 + 𝑒𝑎𝑗

5.2 Estimation
Okay, so we have a model which we now need to fit to our data. When we
do this, we estimate the model parameters using our data. The parameters we
want to estimate are 𝜇 (the overall mean), the treatment effects (𝐴𝑖) and 𝜎2

(the error variance). As for regression, we find least squares estimates for
the parameters which minimise the residual or error sum of squares5:

4In statistics, sums of squares is a measure of variability and refers to squared deviations
from a mean or expected value. For example, the residual sums of squares (sum of squared
deviations of the observations from the fitted values).

5error = observed - fitted.
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SSE = ∑
𝑖

∑
𝑗

𝑒2
𝑖𝑗 = ∑

𝑖
∑

𝑗
(𝑌𝑖𝑗 − ̂𝑌𝑖𝑗)2 = ∑

𝑖
∑

𝑗
(𝑌𝑖𝑗 − 𝜇 − 𝐴𝑖)2

It turns out when we solve for the estimates that minimise the SSE6, we obtain
the following estimators:

̂𝜇 = ̄𝑌..
̂𝜇𝑖 = ̄𝑌𝑖.

and

̂𝐴𝑖 = ̄𝑌𝑖. − ̄𝑌..

From linear model theory we know that the above are unbiased estimates7 of
𝜇 and the 𝐴𝑖’s. What does this tell you? It tells you that we can use the
sample means as estimates for the true means. The estimated mean response
for treatment 𝑖 is the observed sample mean of treatment 𝑖 and the observed
overall mean is the estimated grand mean.

For the last parameter, the error variance, an unbiased estimator is found by
dividing the minimised SSE (i.e. calculated with the least squares estimates) by
its degrees of freedom:

𝑠2 = 1
𝑁 − 𝑎 ∑

𝑖𝑗
(𝑌𝑖𝑗 − ̄𝑌𝑖.)2

This quantity is called the Mean Squares for Error (MSE) or residual mean
square. It has (𝑁 − 𝑎) degrees of freedom since we have 𝑁 observations and
have estimated 𝑎 means. If you look at the formula you’ll notice that it is an
average of the observed variability from the different treatment groups.

Compare this with regression

Compare this with the equations you saw in the regression section. Barring
the extra subscript, the only difference is the equation for calculating the
fitted/predicted value.
In regression, the fitted value is:

̂𝑌𝑖 = ̂𝛽0 + ̂𝛽1𝑋𝑖

and here it is:

6Another name for this is the residual sums of squares (RSS).
7Unbiased means that the expected value of these statistics equals the parameter being

estimated. In other words, the statistic equals the true parameter on average.
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̂𝑌𝑖𝑗 = ̄𝑌𝑖. = ̂𝜇 + ̂𝐴𝑖

5.3 In context of the social media multitasking
example

Let’s take what we’ve learned so far and apply it to our example. We had 𝑎 = 3
treatments each with 𝑟 = 40 replicates. The model equation is:

𝑌𝑖𝑗 = 𝜇 + 𝐴𝑖 + 𝑒𝑖𝑗

where

𝑖 = 1, … , 3
𝑗 = 1, … , 40

If we write the model out for each treatment, we get:

𝑌𝐶𝑗 = 𝜇 + 𝐴𝐶 + 𝑒𝐶𝑗
𝑌𝐸1𝑗 = 𝜇 + 𝐴𝐸1 + 𝑒𝐸1𝑗
𝑌𝐸2𝑗 = 𝜇 + 𝐴𝐸2 + 𝑒𝐸2𝑗

and when we fit the model to the data, the predicted means for the treatments
are:

̂𝑌𝐶 = ̂𝜇 + ̂𝐴𝐶 = ̄𝑌𝐶.
̂𝑌𝐸1 = ̂𝜇 + ̂𝐴𝐸1 = ̄𝑌𝐸1.
̂𝑌𝐸2 = ̂𝜇 + ̂𝐴𝐸2 = ̄𝑌𝐸2.

To fit this model in R, we use the aov function and then use another function to
extract the estimated parameters. By specifying type = “effects”, the function
returns the ̂𝐴𝑖’s

This tells us that the average score for students in the control group is roughly
12% higher than the overall average8. Both experimental groups performed
worse, with students in the second group scoring, on average, about 11% less
than the mean across all groups. We can also extract the overall mean and the
treatment means by specifying type = “means”:

8Remember: 𝜇𝑖 = 𝜇 + 𝐴𝑖
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The grand mean (i.e. average of all test scores) was 64% in this experiment. The
control group scored on average 76% which is 12% higher than the overall mean
and so on. So we have the estimates for the effects, grand mean and treatment
means.

The last parameter we need to estimate is the error variance 𝜎2. Have a look at
the formula again:

𝑠2 = 1
𝑁 − 𝑎 ∑

𝑖𝑗
(𝑌𝑖𝑗 − ̄𝑌𝑖.)2

If we focus on the sum and break into sums of squares for each treatment 𝑖, we
get for the first treatment (let’s say that is the control group):

∑
𝑗

(𝑌1𝑗 − ̄𝑌1.)2

Which is the sum of the squared differences between the observations in the
control group and the mean score of the control group. We can easily calculated
that in R:

First, we subset the data set for the scores in the control group. Then we find
the mean and calculate the squared differences, which is all summed together
to give the sums of squares for treatment group 1. We can repeat this for the
remaining treatments and sum the three sum of squares together and divide by
𝑁 − 𝑎 to get the MSE.

Later we will see that we can extract this quantity easily from the ANOVA table.
But for now, this is a useful exercise to make sure you understand the formula.
So, ̂𝜎2 = 𝑠2 = 200 (rounded off to the nearest integer) and �̂� = 𝑠 = 14. This
is the estimate of variance we will use to conduct an hypothesis to determine if
there are any difference in the treatment means. Now you can see that it takes
into account the variability of all our samples.

5.4 Standard errors and confidence intervals
In the previous section we saw how the parameters of the ANOVA model are
estimated. We also need a measure of uncertainty for each of these estimates
(in the form of a standard error, variance, or confidence interval). Let’s start
with the variance of a treatment mean estimate:

Variance, Standard
Deviation and Standard

Error: what’s all this again?
The variance (Var) is a good way

of measuring variability. The
Standard Deviation (SD) is the
square root of the variance of a

sample or population. The
Standard Error (SE) is the SD of

an estimate (read that again).

𝑉 𝑎𝑟(𝜇𝑖) = 𝜎2

𝑛𝑖

Remember that the sampling distribution of the mean is 𝑁(𝜇, 𝜎2
𝑛 ) and here we

assumed that the groups have equal population variances.
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If we assume that two treatment means are independent, the variance of the
difference between two means is:

𝑉 𝑎𝑟( ̂𝜇𝑖 − ̂𝜇𝑗) = 𝑉 𝑎𝑟( ̂𝜇𝑖) + 𝑉 𝑎𝑟( ̂𝜇𝑗) = 𝜎2

𝑛𝑖
+ 𝜎2

𝑛𝑗

To estimate these variances we substitute the MSE for 𝜎2 as it is an unbiased
estimate of the error variance (the variability within each group). The standard
errors of the estimates are found by taking the square root of the variances.
The standard error is the standard deviation of an estimated quantity, and is
a measure of its precision (uncertainty); how much it would vary in repeated
sampling.

We can assume normal distributions for our estimates because we have assumed
a normal linear model and because they are means (or differences between
means). This means that confidence intervals for the population treatment
means are of the form:

estimate ± 𝑡𝛼/2
𝑣 × SE(estimate)

where 𝑡𝛼/2
𝑣 is the 𝛼/2𝑡ℎ percentile of the Student’s 𝑡 distribution with 𝑣 degrees

of freedom. The degrees of freedom are the error degrees of freedom, 𝑁 − 𝑎 for
CRD.

What are the standard errors associated with the parameter estimates in the so-
cial media example? We can easily extract this by specifying an extra argument
to the model.tables function.

Standard error of the effects:

and for the treatment means:

So, now we have parameter estimates and their standard errors. Equipped
with these, we are closer to answering the original question: Does social media
multitasking impact academic performance of students? Based on the model
we fitted and the parameters we estimated, how do we test this? The answer is
with an ANOVA table.

5.5 Summary
This chapter introduces the Completely Randomized Design (CRD) model and
explains why ANOVA is preferred over multiple t-tests, which inflate the Type
1 Error rate.

In ANOVA, each observation is modeled as:

𝑌𝑖𝑗 = 𝜇 + 𝐴𝑖 + 𝑒𝑖𝑗
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where 𝜇 is the overall mean, 𝐴𝑖 is the treatment effect (difference between treat-
ment mean 𝜇𝑖 and the overall mean), and 𝑒𝑖𝑗 is random error which normally
distributed with mean 0 and variance (𝜎2).

Parameters are estimated using least squares, with the mean squares error
(MSE) providing an estimate of variance (𝜎2).

Applying ANOVA to the social media multitasking study, we estimated treat-
ment means and effects together with their standard errors, setting the stage
for hypothesis testing using an ANOVA table.



Chapter 6

Analysis of Variance

The ANOVA model we have introduced is identical to a regression model with
categorical variables, it is just parameterised differently. So why the different
names and emphasis on variance - ANalysis Of VAriance? A well designed
experiment allows us to estimate the within-treatment variability and between
treatment variability. More specifically, it enables the partitioning of the total
sum of squares into independent parts, one for each factor in the model (treat-
ment and/or blocking factors). This allows us unambiguously to estimate the
variability in the response contributed by each factor and the experimental er-
ror variance! We can then use this partitioning to perform hypothesis tests. In
other words: by looking at the variation we can find out if the response differs
due to the treatments.

An ANOVA applied to a single factor CRD is called a one-way ANOVA or
between-subjects ANOVA or an independent factor ANOVA. It is a generaliza-
tion of the ‘two-sample t-test assuming equal variances’ to the case of more than
two populations.

6.1 An Intuitive Explanation
Before we consider real data, we first want to look at a constructed example to
explain the main ideas behind ANOVA. Assume that we carried out two experi-
ments on plants removing nitrate (NO3) from storm water. In both experiments,
we consider three plant species (un-creatively called ‘A’, ‘B’, and ‘C’). In both
experiments, we have three replicates per treatment. We are only interested
in comparing the species so there is no control treatment. We obtained the
following data:

If you look at these data sets carefully, you will see that each of the three species
had the same mean in the two experiments. However, the measurements were
much more variable in Experiment 2 than in Experiment 1.

55
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Table 6.1: Hypothetical Experiment

(a) Experiment 1

Species A B C
40 48 58
42 50 62
38 52 60

Average 40 50 60

(b) Experiment 2

Species A B C
40 65 45
25 35 75
55 50 60

Average 40 50 60

Which experiment has better evidence that the true mean NO3 removal
rate differs between species? Pause and think about this before
reading on.

Intuitively, we would say that Experiment 1 shows much stronger evidence
for a true effect than Experiment 2. Why? Both experiments show the
same differences among the treatment (species) means. So the variability
in the treatment means is the same. However, the variability among
the observations within treatments differs between the two experi-
ments. In Experiment 1, the variability within treatments is much less
than the variability among treatments. In Experiment 2, the variability
within treatments is about the same as the variability among treatments.

The basic idea of ANOVA relies on the ratio of the among-treatment-means
variation to the within-treatment variation. This is the F-ratio. The F-ratio
can be thought of as a signal-to-noise ratio:

• Large ratios imply the signal (difference among the means) is large relative
to the noise (variation within groups), providing evidence of a difference
in the means.

• Small ratios imply the signal (difference among the means) is small relative
to the noise, indicating no evidence that the means differ.

6.2 The F-test
When we take the ratio of two variances, it can be shown that the ratio follows
an F-distribution with degrees of freedom equal to those of the two variances.

So, for example, say we want to compare the variability between two indepen-
dent groups, each with normally distributed observations. We define the test
statistic as the ratio of the two sample variances:

𝐹 = 𝑠2
1

𝑠2
2
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where 𝑠2
1 and 𝑠2

2 are the sample variances of the two groups. The resulting
statistic follows an F-distribution with degrees of freedom:

• 𝑑𝑓1 = 𝑛1 − 1 for the numerator (corresponding to variance 𝑠2
1)

• 𝑑𝑓2 = 𝑛2 − 1 for the denominator (corresponding to variance 𝑠2
2)

The F-distribution is a probability distribution that arises frequently, particu-
larly in ANOVA and regression analysis.
# Define the range of F-values
x <- seq(0, 5, length.out = 500)

# Define degrees of freedom pairs
df_pairs <- list(
c(1, 10),
c(5, 10),
c(10, 10),
c(20, 20)

)

# Define colors for different lines
colors <- c("red", "blue", "green", "purple")

# Create an empty plot
plot(x, df(x, df_pairs[[1]][1], df_pairs[[1]][2]), type="n",

xlab="F value", ylab="Density",
main="F-distribution for Varying Degrees of Freedom")

# Loop through df pairs and add lines
for (i in seq_along(df_pairs)) {
lines(x, df(x, df_pairs[[i]][1], df_pairs[[i]][2]), col=colors[i], lwd=2)

}

# Add a legend
legend("topright", legend=paste("df1 =", sapply(df_pairs, `[[`, 1), ", df2 =", sapply(df_pairs, `[[`, 2)),

col=colors, lwd=2, bty="n")
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Key properties of the F-distribution:

• It is always non-negative: 𝐹 ≥ 0.
• It is asymmetric and skewed to the right, particularly for small degrees of

freedom.
• As the degrees of freedom increase, the F-distribution approaches a normal

shape.

6.3 Analysis of Variance for CRD
Let’s go back to the linear model for the single-factor CRD that we examined
earlier:

𝑌𝑖𝑗 = 𝜇 + 𝐴𝑖 + 𝑒𝑖𝑗

where 𝜇 is the overall mean, 𝐴𝑖 are the treatment effects (that is the difference
between treatment means and the overall mean), and 𝑒𝑖𝑗 are the error terms (the
differences between the observation and the fitted value, i.e. treatment mean).
Remember that the estimated values for these parameters are the observed
values:

̂𝜇 = ̄𝑌..
̂𝐴𝑖 = ̄𝑌𝑖. − ̄𝑌..

̂𝑒𝑖𝑗 = 𝑌𝑖𝑗 − ̄𝑌𝑖.
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By taking 𝜇 over to the left-hand-side in the equation, and substituting the
above observed values we obtain:

𝑌𝑖𝑗 − 𝜇 = (𝜇𝑖 − 𝜇) + (𝑌𝑖𝑗 − 𝜇)
𝑌𝑖𝑗 − ̄𝑌 = ( ̄𝑌𝑖 − ̄𝑌 ) + (𝑌𝑖𝑗 − ̄𝑌𝑖)

Squaring and summing both sides gives the decomposition:

∑
𝑖

∑
𝑗

(𝑌𝑖𝑗 − ̄𝑌 )2 = ∑
𝑖

∑
𝑗

( ̄𝑌𝑖 − ̄𝑌 )2 + ∑
𝑖

∑
𝑗

(𝑌𝑖𝑗 − ̄𝑌𝑖)2

Each term represents squared deviations:

• The first term is of observations around the overall mean representing the
total variation in the response.

• The second is of the group means around the overall mean representing
the explained variation or variation between treatments and,

• The last term represents the deviations of observations from their treat-
ment means (unexplained or within treatment variation).

We could also call these:

𝑆𝑆total = 𝑆𝑆between groups + 𝑆𝑆within groups

or

𝑆𝑆total = 𝑆𝑆treatment + 𝑆𝑆error

The analysis of variance is based on this identity1. The total sums of
squares equals the sum of squares between groups plus the sum of squares within
groups.

Back to our constructed example. What are the different sums of squares? For
Experiment 1, we get: 𝑆𝑆total = 624; 𝑆𝑆between groups = 600; 𝑆𝑆within groups =
24. Verify these numbers and do the same for Experiment 2.

6.4 ANOVA Table
This division of the total sums of squares is typically summarised in an analysis
of variance table. The first column contains the “source” of the variability with
the first entry (the order is not important, although this is the typical order)
representing the between-treatment variability (explained variation), second is

1In mathematics, an identity is an equation that is always true, regardless of the values of
it’s variables. In other words, the identity is true for all observations.
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the error (unexplained variation, variation of experimental units within treat-
ments) and lastly the total variation. Here we have used the notation 𝑆𝑆𝐴 to
represent the sums of squares for treatment factor A. The second column gives
the sums of squares of each source. The third column contains the degrees of
freedom.

Source
Sums of
Squares (SS) df

Means
Squares (MS) F

Treatment ∑𝑖 𝑛𝑖( ̄𝑌𝑖 −
̄𝑌 )2

𝑎 − 1 𝑀𝑆𝐴 =
𝑆𝑆𝐴/(𝑎 − 1)

𝑀𝑆𝐴/𝑀𝑆𝐸

Residuals
(Error)

∑𝑖 ∑𝑗(𝑌𝑖𝑗 −
̄𝑌𝑖)2

𝑁 − 𝑎 𝑀𝑆𝐸 =
𝑆𝑆𝐸/(𝑁 − 𝑎)

Total ∑𝑖 ∑𝑗(𝑌𝑖𝑗 −
̄𝑌 )2

𝑁 − 1

The fourth column contains the Mean squares. This is what we get when we
divide sums of squares by the appropriate degrees of freedom.

MS = 𝑆𝑆
𝑑𝑓

This is simply an average and may be seen as an estimate of variance. So when
we divide the treatment SS by its degrees of freedom, we get an estimate of the
variation due to treatments and similarly, for the the residual SS, we get an
estimate of the error variance. You’ve seen this before!

MSE = �̂�2 = 1
𝑁 − 𝑎 ∑

𝑖
∑

𝑗
(𝑌𝑖𝑗 − 𝑌𝑖.)2

6.4.1 What Are Degrees of Freedom?
Degrees of freedom (df) represent the number of independent pieces of informa-
tion available for estimating a parameter. When making statistical calculations,
we typically lose one degree of freedom for every estimated parameter before
the current calculation.

For example, when estimating the standard deviation of a data set, we first
estimate the mean, thereby reducing the number of independent observations
available to calculate variability. This is why the denominator in the variance
formula is 𝑁 − 1:

𝑠2 = ∑(𝑌𝑖 − ̄𝑌 )2

𝑁 − 1
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You can think of degrees of freedom as the number of independent deviations
around a mean. If we have 𝑛 observations and their mean, once we know 𝑛 − 1
of the values, the last one is fixed—it must take on a specific value to satisfy
the mean equation. Therefore, only 𝑛 − 1 observations are truly free to vary.

Example: Three Numbers Summing to a Fixed Mean

Say we have three (𝑛 = 3) numbers: (4, 6, 8). The mean of these three numbers
is 6. If we only knew the first two numbers (4,6) and the mean, the third number
must be 8:

̄𝑥 = ∑ 𝑥𝑖
𝑛

6 = 4 + 6 + 𝑥3
3

18 = 10 + 𝑥3
𝑥3 = 8

Since the third number is uniquely determined by the first two and the mean,
we only have 𝑛 − 1 (i.e., 2) degrees of freedom.

Another Intuitive Analogy

Imagine you are distributing a fixed amount of money among friends. If you
have R100 and four friends, you can freely allocate money to three friends, but
whatever is left must go to the fourth friend to ensure the total remains R100.
Similarly, once the first 𝑛 − 1 values are chosen, the last value is determined,
limiting the degrees of freedom.

In ANOVA

If you look at the treatment sums of squares: ∑𝑖 𝑛𝑖( ̄𝑌𝑖. − ̄𝑌..)2. We have 𝑎
deviations around the grand mean. But once we know 𝑎 − 1 of the treatment
means and the grand mean2, the last mean is fixed. So we have 𝑎−1 independent
deviations around the overall mean.

If you look at the treatment sums of squares: ∑𝑖 ∑𝑗(𝑌𝑖𝑗 − ̄𝑌..)2. We are using
𝑁 observations and calculating the deviations of these observations around the
overall mean. So, only 𝑁 − 1 observations are free to vary, the last observation
is fixed for the calculated mean to hold true.

6.5 Back to the constructed example
What does the ANOVA table look like for our constructed example? You’ve
already worked out the sums of squares. What are the df’s and Mean squares?

Let’s have a look at Experiment 1 first.
2Remember, 𝜇 = ∑ 𝜇𝑖

𝑎 .
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# Experiment 1 data
exp1data <- data.frame(species = rep(c("A","B","C"), each = 3),

response = c(40,42,38,48,50,52,58,62,60))

exp1_anova <- aov(response~species, data = exp1data)
summary(exp1_anova)

Df Sum Sq Mean Sq F value Pr(>F)
species 2 600 300 75 5.69e-05 ***
Residuals 6 24 4
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

And then Experiment 2:
# Experiment 2 data
exp2data <- data.frame(species = rep(c("A","B","C"), each = 3),

response = c(40,25,55,65,35,50,45,75,60))

exp2_anova <- aov(response~species, data = exp2data)
summary(exp2_anova)

Df Sum Sq Mean Sq F value Pr(>F)
species 2 600 300 1.333 0.332
Residuals 6 1350 225

Since the overall mean and the treatment means were the same in both exper-
iment, we expected the 𝑆𝑆treatment to be the same in both experiments. This
was indeed the case – they are 600 in both experiments. The sample sizes were
also the same in both experiments, so we would expect the df to be the same.
With 9 observations, we have 8 df in total. Three treatments (Species) leads to 2
treatment df and 6 df remain for the residuals. The difference between the two
experiments is that the observations were much more variable in Experiment
2 than in Experiment 1. Accordingly, we find that 𝑆𝑆error was much larger
in Experiment 2, and this led to larger MSE in Experiment 2. How does this
affect the conclusions we draw from each of the experiments? This is where the
F-ratio comes in.

6.6 The F-test in ANOVA
We first set up the null and alternate hypothesis. The null hypothesis is that all
treatments have the same mean, or equivalently, that all treatment effects are
zero.

𝐻0 ∶ 𝜇1 = 𝜇2 = … = 𝜇𝑎
𝐻0 ∶ 𝐴1 = 𝐴2 = … = 𝐴𝑎 = 0
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And the alternative hypothesis is the opposite of that:

𝐻𝐴 ∶ At least one 𝜇𝑖 is different.
𝐻𝐴 ∶ At least one 𝐴𝑖 ≠ 0

Read that again. The alternative
is that at least one treatment is
different, there is a difference
somewhere. It is not that all
treatment means are different.

If 𝐻0 is true, the among-treatment-means variation should equal the within-
treatment variation. We can use the F-ratio to test 𝐻0:

𝐹 ∗ = 𝑀𝑆𝐴
𝑀𝑆𝐸

This ratio has an F-distribution with 𝑎 − 1 numerator degrees of freedom and
𝑁 − 𝑎 denominator degrees of freedom.

You can think of the F-ratio as a signal-to-noise ratio. If 𝐻0 is true, 𝐹 is
expected to be close to 1. If 𝐻0 is false, 𝐹 is expected to be much larger than 1.
This means that the F-test we conduct is a one-sided upper tailed test. If
𝐻0 is false, the means squares for treatment will be much larger than the MSE,
resulting in large F-values. We are only interested in this one side of possible
outcomes therefore, a one-sided test.

In Experiment 1, 𝐹 = 300
4 = 75, which leads to a very small 𝑝-value (< 0.001).

The signal was much larger than the noise, and our data are very unlikely if 𝐻0
were true. So we have good evidence that the treatments differ.

In Experiment 2, 𝐹 = 300
225 = 1.33, which leads to a large 𝑝-value (0.33). Signal

and noise were of similar magnitude, and our data are not unlikely if 𝐻0 were
true. So we have no evidence against 𝐻0, i.e., no evidence that nitrate extraction
differs between species.

How did we get these p-values? This is the same as in any hypothesis test. We
have a test statistic and to say something about how likely this test statistic
(or more extreme is) under the null hypothesis, we need the null distribution of
the test statistic (that is the sampling distribution of the test statistic as if the
null hypothesis were true). We then compared the observed value of the test
statistic to that null distribution and asked ourselves how unusual it is in light
of that distribution. Does our test statistic belong to this null distribution?

The 𝐹 test statistic follows an F distribution as specified above.

F∗ ∼ F(𝑎−1), (𝑁−𝑎)

For both experiment, this equates to an F distribution with 2 numerator and 6
denominator degrees of freedom which looks like this:
# Define the range of F-values
x <- seq(0, 100, length.out = 500)
y <- df(x, df1 = 2, df2 = 6)
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plot(x, y, type="l",
xlab="F value", ylab="Density",
main="")
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We can plot the test statistics on the graph as well and highlight the area under
the curve to the right of each of these test statistics:
# Define x values
x <- seq(0, 100, length.out = 500)
y <- df(x, df1 = 2, df2 = 6)

# Define test_stats
test_stats <- c(75, 1.33)

# Plot the F-distribution density curve
plot(x, y, type = "l", col = "black", lwd = 2,

xlab = "F value", ylab = "Density",
main = "")

# Add vertical lines at test_stats
abline(v = test_stats, col = "red", lty = 2, lwd = 2)

# Shade the areas to the right of the test_stats
polygon(c(test_stats[1], x[x >= test_stats[1]], max(x)),

c(0, y[x >= test_stats[1]], 0), col = rgb(0, 0, 1, 0.3), border = NA)

polygon(c(test_stats[2], x[x >= test_stats[2]], max(x)),
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c(0, y[x >= test_stats[2]], 0), col = rgb(1, 0, 0, 0.3), border = NA)

# Add points at the critical values
points(test_stats, df(test_stats, df1 = 2, df2 = 6), pch = 19, col = "black")
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Remember sampling distributions are probability distributions. For continuous
random variables, the area under the curve represents probability. Specifically,
the probability of a random variable taking on a specific value or larger, is the
area under the curve to the right of that value. For test statistics and their
probability distribution, that probability is the p-value. The p-value is the
probability of observing a test statistic at least as extreme as we did if the null
hypothesis was in fact true. The smaller the p-value, the stronger the evidence
against 𝐻0.

We can obtain the p-value in two ways (you will need to be able to do both):

1. Using Software.

In R, there are several built-in functions for certain probability distributions.
These functions typically follow a naming convention:

• d<dist>() for density functions
• p<dist>() for cumulative probability functions
• q<dist>() for quantile functions
• r<dist>() for random sampling

For example, when working with the F-distribution, we use:

• df(x, df1, df2) for the probability density function (PDF)
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• pf(x, df1, df2) for the cumulative distribution function (CDF)
• qf(p, df1, df2) for quantiles
• rf(n, df1, df2) for random sampling

To obtain a p-value, we often use the cumulative probability functions
(p<dist>()) with returns 𝑃𝑟[𝑋 < 𝑥] so 𝑃𝑟[𝑋 > 𝑥] = 1 − 𝑃𝑟[𝑋 < 𝑥]. Below is
how to obtain the p-value for the second experiment:
f_statistic <- 1.33
df1 <- 2 # Numerator degrees of freedom
df2 <- 6 # Denominator degrees of freedom

# Upper-tail probability (right-tailed test)
p_value <- 1 - pf(f_statistic, df1, df2)
p_value

[1] 0.332583

This value is quite large and corresponds to the area to the right of an F value
of 1.33 for the distribution above. We interpret this p-value as the test statistic
is quite likely to have come from this null distribution, there is a 33% chance of
observing this test statistic or more extreme if the null hypothesis is true. We
do not have strong evidence against the null hypothesis of equal means.

Caution

A large p-value does not mean that 𝐻0 is true!
• The p-value is not the probability that the null hypothesis is true.
• The p-value is not the probability that the alternative hypothesis is

false.
• The p-value is a statement about the relation of the data to the null

hypothesis.
• The p-value does not indicate the size or biological importance of

the observed pattern.

Tip

You can round the p-value if you need to enter the value to a certain
number of decimals in a quiz or test using the function round.

2. Using tables.

Before the days of widespread programming, statisticians used tables to find
critical values and p-values for various probability distributions. These tables
were pre-computed for different significance levels (e.g., 0.05, 0.01) and degrees
of freedom. In modern statistical analysis, we no longer rely on static tables,
as software like R can compute exact probabilities. But since we have written
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examinations, we have to learn how to do this and it is a useful exercise to make
sure you understand what you are doing and not just spitting out a value.

F-tables look like this:

Read it carefully. The table says: “Entries in the table give 𝐹𝛼 values, where 𝛼
is the area or probability in the upper tail of the F distribution. For example,
with four numerator degrees of freedom, eight denominator degrees of freedom,
and 0.05 area in the upper tail, F.05 = 3.84.” This is important, not all tables
look like this. See if you can find the F-value mentioned.

The numerator df is in the column and the denominator df is in the row. In the
row dimension are different 𝛼 values as well. To find an F-value, locate the df
in the column and row. Can you find the following:

• 𝐹 0.05
4,4 = 6.39

• 𝐹 0.1
10,2 = 9.39

• 𝐹 0.025
1,1 = 647.79

• 𝐹 0.01
7,3 = 27.67

This is how we find critical values of F-distributions. If you are asked to compare
a test statistic with a critical value at a specific significance level, you will find
the value with a table like this. To find the critical values in R, we use the fq
function:
# F4,4 0.05

qf(p = 0.05, df1 = 4, df2 = 4, lower.tail = FALSE) # if lower.tail = TRUE which is the default, the critical value with probability 0.05 to the left would be return.



68 CHAPTER 6. ANALYSIS OF VARIANCE

[1] 6.388233
# F10,2 0.11
qf(p = 0.1, df1 = 10, df2 = 2, lower.tail = FALSE)

[1] 9.391573
# F1,1 0.025
qf(p = 0.025, df1 = 1, df2 = 1, lower.tail = FALSE)

[1] 647.789
# F7,3 0.01
qf(p = 0.01, df1 = 7, df2 = 3, lower.tail = FALSE)

[1] 27.6717

Now, how do we use the tables to obtain p-values? The test statistic for the
first Experiment was 1.33 and the df’s were 2 (num) and 6 (denom). If we look
at the table above, it only goes to 4 denominator degrees of freedom, so we need
the continuation of the table.

Now
we locate the F-values with 2 and 6 degrees of freedom and compare the test
statistic of the second experiment (1.33) to them. The smallest value is 3.46
where the probability to the right of that value is 0.1. Our test statistic is much
smaller than this, so lies further to the right and so logically, the right-hand-side
probability of this value with be greater than 0.1. So we conclude that the
p-value that our p-value is > 0.1 (which it is, we calculated it to be 0.32). With
tables we cannot get exact probabilities, but we can say something about the
magnitude of the p-value. Try it for the first experiment which had an F-value
of 75.
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6.7 Conclusion: Does social media multitasking
impact academic performance of students?

Let’s revisit the real experiment we started this section with. I repeat the
experiment description below.

Example 5.1

Two researchers from Turkey, Demirbilek and Talan (2018), conducted a
study to try and answer this question. Specifically, they examined the
impact of social media multitasking during live lectures on students’ aca-
demic performance.
A total of 120 undergraduate students were randomly assigned to one of
three groups:

1. Control Group: Students used traditional pen-and-paper note-
taking.

2. Experimental Group 1 (Exp 1): Students engaged in SMS tex-
ting during the lecture.

3. Experimental Group 2 (Exp 2): Students used Facebook during
the lecture.

Over a three-week period, participants attended the same lectures on Mi-
crosoft Excel. To measure academic performance, a standardised test was
administered.

In the previous sections we introduced this study, checked the model assump-
tions and obtained estimates of the model parameters. Now equipped with that
information and all that you have learnt, we are ready to fit to conduct the
ANOVA hypothesis test to finally answer our question:

Does social media multitasking impact academic performance of students?

We start with the hypotheses:

𝐻0 ∶ 𝜇1 = 𝜇2 = … = 𝜇𝑎

In words we say that the average academic performance of students did not
differ across the treatments (levels of social media multitasking).

And the alternative hypothesis is the opposite of that:

𝐻𝐴 ∶ At least one 𝜇𝑖 is different.

At least one of the social media multitasking treatments resulted in a different
mean academic performance, they are not all equal.

We have fit the model already (called m1) and call the summary function to
obtain the ANOVA table:
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# m1 <- aov(Posttest ~ Group, data = multitask)

summary(m1)

Df Sum Sq Mean Sq F value Pr(>F)
Group 2 10975 5488 27.42 1.72e-10 ***
Residuals 117 23417 200
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Violà! We have our ANOVA table. Inspect the results and make sure you
understand how each value is obtained and what they represent. By just looking
at the table, you should be able to answer the following questions:

1. How many treatments were there?
2. How many observations in total?
3. Is there evidence for a treatment effect?

The first two you can answer with the degrees of freedom and the third is
answered by conducting the hypothesis test. With three treatments, we have 2
treatment degrees of freedom. We had 40 students per group, the sample size is
then 120 which means there are 117 degrees of freedom for the residuals. The
treatment MS (5488) was much larger that the MSE (200). This leads to an
F-ratio of 27.42 with a p-value of 1.72 × 𝑒−10 (that’s extremely small). We have
strong evidence that the treatments did result different academic performances
across students At least one treatment resulted in a different mean academic
performance. In a report, you would write:

“The manipulation of social media multitasking affected the academic perfor-
mance of students in this experiment (𝐹2,117 = 27.42, 𝑝 = 1.72 × 𝑒−10).”

But which treatments differed? We cannot answer that question with this
hypothesis. It only tells us that there is a difference, there is a treatment effect.
It does not tell us where the difference or possible differences lie. To
determine this, we need to use treatment contrasts. Before we do this or present
any results, we need to do one last thing.

6.8 Model Checking
Remember that we said some of our assumptions need to be checked after the
model is fitted. Our model specifies the error terms are (1) normally distributed,
(2) all with the same variance (homoscedastic), and (3) that they are indepen-
dent. The residuals are estimates of these error terms and we can therefore use
them to check the model assumptions. Normally distributed, equal variance and
independent really means that there is no discernible pattern or structure left
in the residuals. If there is, then the model has failed to pick up an important
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structure in the data.3

We call the function plot on our model object. For our purposes we are only
going to look at two of the plots and we inspect them one by one by specifying
the plot number with the argument which:
plot(m1, which = 1)
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This is a plot of the residuals (obs - fitted) against the fitted values and we are
hoping to see no patterns. We have three lines, one for each treatment group
and we want to check that our residuals are centered around zero and have
constant variance across the groups. 4

plot(m1, which = 2)

3The same concepts apply to linear regression models.
4Remember we assumed 𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎2) and residuals are estimates of the errors.
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The second plot is a Q-Q plot which we have seen before when we checked the
assumption of normality before model fitting. Now, we plot the standardised
residuals against the theoretical quantiles of a standard normal distribution. We
are looking for the same pattern as before, that the points fall close to the dotted
line. As usual, there many be some deviations at the tails but for the most part,
there are no serious problems with this plot. If there is some doubt, we can also
look at a histogram of the residuals:
hist(resid(m1))
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The assumption of independent errors is mostly checked before model fitting and
by consideration of the experimental design. If we suspected auto-correlated
residuals, we could plot the residuals against order:
plot(resid(m1) ~ seq_along(resid(m1)),

xlab = "Order of Observations",
ylab = "Residuals",
main = "Residuals vs. Order")

abline(h = 0, col = "red")
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There are no patterns at all, the residuals appear randomly distributed. So no
indications of dependence.

6.9 Summary
That’s a lot. So let’s summarise what we did in this chapter:

We introduced Analysis of Variance (ANOVA), which is fundamentally the same
as a regression model with categorical variables but parameterised differently.
ANOVA allows us to partition total variance into between-treatment and within-
treatment variability, helping us determine whether observed differences in the
response variable are due to the treatments and not just sampling error.

We explored ANOVA through a constructed experiment on nitrate removal by
plants, demonstrating that variation within treatments influences our ability to
detect true treatment effects. The F-ratio, a measure of the signal-to-noise ratio,
is central to ANOVA. A large F-ratio suggests that between-group variability
is greater than within-group variability, providing evidence that at least one
treatment differs.

The F-test determines statistical significance, and its p-value is derived from
the F-distribution. A small p-value suggests strong evidence against the null
hypothesis (𝐻0), indicating at least one group mean differs. The ANOVA table
summarises the calculations of the hypothesis test, including sums of squares
(SS), degrees of freedom (df), mean squares (MS), and the F-statistic.

Applying ANOVA to real experimental data, we analysed the impact of social
media multitasking on student performance. With three treatment groups (con-
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trol, SMS, Facebook), we found a statistically significant effect (𝐹2,117 = 27.42,
𝑝 = 1.72 × 10−10), confirming that at least one treatment influenced academic
performance. However, ANOVA does not specify which groups differ and how
they differ — this requires post-hoc tests.

Finally, we validated model assumptions:

• Normality: Checked via a Q-Q plot and histogram of residuals.

• Homoscedasticity (equal variance): Examined using a residuals vs. fitted
plot.

• Independence: Considered in the experimental design and checked by plot-
ting residuals against observation order.
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Chapter 7

Contrasts

The aim in many experiments is to compare treatments. To do this we contrast
one group of means with another, i.e. we compare means, or groups of means,
to see if treatments differ, and by how much they differ. A comparison of
treatments (or groups of treatments) is called a contrast. If the experiment has
been conducted as a result of specific research hypotheses, these will already
define the contrasts we should construct first.

For a single-factor CRD with only two treatments, we could conduct a t-test
to compare the two means or construct a confidence interval to estimate the
difference. But we know that with more than two treatments, we encounter
problems of multiple testing. How do we contrast treatments when we have a
factor with more than two levels?

Contrasting pairs of treatment means
We wrote the ANOVA model as:

𝑌𝑖𝑗 = 𝜇 + 𝐴𝑖 + 𝑒𝑖𝑗

with overall mean and the treatment effects as the parameters (as well as the
error variance). Because the effects are constrained to sum to zero, i.e. ∑𝑎

𝑖 𝐴𝑖 =
0 we call this ANOVA model the sum-to-zero parameterisation.

The above parameterisation is useful for constructing ANOVA tables. For esti-
mating differences between treatments, however, a different parameterisation is
more useful:

𝑌𝑖𝑗 = 𝐴𝑖 + 𝑒𝑖𝑗
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In this version, we no longer have the overall mean as a parameter but use only
the treatment effects 𝐴𝑖. Remember that any model ultimately needs to describe
the treatment means. There are a number of different ways in which to do this.
One is the so-called treatment contrast parameterisation, which R uses as default
for regression models. In this parameterisation, 𝐴1 estimates the mean of the
baseline treatment (by default, R orders the treatments alphabetically and takes
the first one as baseline). The other parameters then estimate the difference
between each treatment and the baseline treatment: 𝐴2 estimates the difference
between the second and the first treatment, 𝐴3 estimates the difference between
the third and the first, etc.

Construction of treatmenat
means under the treatment
contrast parameterisation:

𝜇1 = 𝐴1
𝜇2 = 𝐴1 + 𝐴2

⋮
𝜇𝑎 = 𝐴1 + 𝐴𝑎

and under the sum-to-zero
parameterisation:

𝜇1 = 𝜇 + 𝐴1
𝜇2 = 𝜇 + 𝐴2

⋮
𝜇𝑎 = 𝜇 + 𝐴𝑎

To get a better understanding of this, let’s fit the model to the social media
data with this parameterisation. In R, this is done by using the lm function.
m1.tc <- lm(Posttest ~ Group, data = multitask)
summary(m1.tc)

Call:
lm(formula = Posttest ~ Group, data = multitask)

Residuals:
Min 1Q Median 3Q Max

-32.964 -10.175 0.583 8.550 37.408

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 75.634 2.237 33.812 < 2e-16 ***
GroupExp1 -12.752 3.163 -4.031 9.92e-05 ***
GroupExp2 -23.394 3.163 -7.395 2.32e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 14.15 on 117 degrees of freedom
Multiple R-squared: 0.3191, Adjusted R-squared: 0.3075
F-statistic: 27.42 on 2 and 117 DF, p-value: 1.717e-10

This is exactly the same output as you have seen before in the regression section!
The intercept measures the mean of the baseline treatment (here it is the Control
group). The next estimate GroupExp1 is the difference between the mean of
Experiment 1 and the mean of the Control group. Similarly, the last one is
the difference between the mean of the Control Group and that of Experiment
2. You can verify this by using the mean estimates we obtain when we fit the
model previously:
model.tables(m1, type = "means")

Tables of means
Grand mean
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63.58527

Group
Group
Control Exp1 Exp2
75.63 62.88 52.24

62.88 - 75.63 #GroupExp1

[1] -12.75
52.24 - 75.63 #GroupExp2

[1] -23.39

Why is this useful? Now, we can formally test whether these differences are
statistically significant using a hypothesis test!

Think back to regression—what was the null hypothesis for the coefficients in
the output?

It was:

𝛽𝑖 = 0
.

The same principle applies here. We test whether the treatment effects (𝐴𝑖) are
equal to zero:

𝐻0 ∶ 𝐴𝑖 = 0

Since we are interested in testing differences between groups, and the control
group serves as the baseline, we are specifically testing:

𝐻0 ∶ 𝐴2 = 0
𝐻0 ∶ 𝐴3 = 0

This is the test that R conducts in the output above. It tests, for the last two
parameters, the hypothesis that the difference between Experiment 1 and the
Control is zero an that the difference between Experiment 2 and the Control is
zero. In both cases, the p-values are extremely small which suggest that there
are differences (the effects are not equal to zero).

What about the intercept? This is testing that the mean of the Control group
is zero. So, it tests whether the students in the control group scored zero on
average. This doesn’t really make sense and it is not a useful test. So not all



80 CHAPTER 7. CONTRASTS

tests that R carries out are necessarily useful or informative! Very often testing
whether the intercept is different from zero is not interesting.

What if we aren’t interested in the contrast R perform by default? We wanted
to know whether there is a difference between the other two groups? We simply
need to change the baseline treatment that R uses and we can do this easily
using the relevel command:
m1.tc <- lm(Posttest ~ relevel(Group, ref ="Exp1"), data = multitask)
summary(m1.tc)

Call:
lm(formula = Posttest ~ relevel(Group, ref = "Exp1"), data = multitask)

Residuals:
Min 1Q Median 3Q Max

-32.964 -10.175 0.583 8.550 37.408

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 62.882 2.237 28.111 < 2e-16 ***
relevel(Group, ref = "Exp1")Control 12.752 3.163 4.031 9.92e-05 ***
relevel(Group, ref = "Exp1")Exp2 -10.642 3.163 -3.364 0.00104 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 14.15 on 117 degrees of freedom
Multiple R-squared: 0.3191, Adjusted R-squared: 0.3075
F-statistic: 27.42 on 2 and 117 DF, p-value: 1.717e-10

Notice that the residual standard error, F-value and other statistics at the end
of the output are exactly the same as for Model m1.tc above. The two models
are equivalent and provide the same fit to the data. The only difference is that
the parameters have different interpretations.

To conclude this section, we present the final results of the social media multi-
tasking experiment. The ANOVA revealed a significant treatment effect on aca-
demic performance (𝐹 = 27.42, 𝑝 = 1.72 × 𝑒−10). Specifically, students in both
experimental conditions performed worse than those in the control group. On av-
erage, students in Experiment 1 scored 12% lower (𝑡 = −4.031, 𝑝 = 9.92×10−5),
while those in Experiment 2 scored 24% lower (𝑡 = −7.395, 𝑝 = 2.32 × 10−11),
with a standard error of 3.163. Students in Experiment 2 scored on average 10%
less than those in Experiment 1 (𝑡 = −3.364, 𝑝 = 0.001). This confirms that
multitasking with social media during lectures negatively impacted academic
performance in this experiment.

I think the message is clear, going on social media during lectures is probably
not going to help you learn. In general reducing the time you spend on social
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media will probably help you. You certainly don’t have to delete all social media
apps, but taking intentional breaks and trying to give your full attention when
it is required, will certainly make a difference. Here are some videos that have
motivated me to improve my focu and decrease my time spent on social media!

• Why we can’t focus https://www.youtube.com/watch?v=6QltxZ-vPMc

• Quit social media https://www.youtube.com/watch?v=3E7hkPZ-HTk

https://www.youtube.com/watch?v=6QltxZ-vPMc
https://www.youtube.com/watch?v=3E7hkPZ-HTk
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Part III

Randomised Block Designs
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Chapter 8

Introduction

So far, we have examined completely randomised designs where randomisation
of experimental units to treatments was completely unrestricted. With complete
randomisation, all other variables (the environment that we can never control
completely) that might affect the response are, on average, equal in all treatment
groups. This allows us to be confident that differences in group means are due
to the treatments.

However, there is often important variation in additional variables that we are
not directly interested in. If we can group our experimental units with respect
to these variables to make them more similar, we achieve a more powerful design.
This is the idea of blocking.

If blocks are used effectively, we can separate variability due to treatments,
blocks, and errors, reducing unexplained variability. That is, variability be-
tween blocks can be estimated and removed from the residual error. Essentially,
we compare treatments over more similar experimental units than in a com-
pletely randomised design. With reduced error variance, our test becomes more
powerful.

Blocking is also useful when we want to demonstrate that treatment differences
hold over a wider range of conditions. For example, in the social media multi-
tasking example, the experiment was conducted on first year students. Strictly
speaking, the results then only apply to first year students and extrapolation
to students in different years of their degree is limited. Alternatively, we could
choose students from first, second and third year (for example) and apply one
replicate of each treatment within year. In this case, year of study would be the
blocking factor.

More generally, we often want to show that our results hold for different species,
age groups, or biological sexes. In such cases, we could use species, age, or sex
as blocks. While blocks are typically used to control for variation in variables
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we are not directly interested in, sometimes these factors may also be of interest
in their own right.

8.1 Treatments vs. Blocks
When is a factor a treatment, and when is it a block?

A good way to distinguish between them is by asking whether we can manipulate
the factor and randomly assign experimental units to its levels.

• We generally cannot manipulate the age or sex of an individual, but we
can manipulate, for example, the food they receive. So, age and sex are
blocking factors, whereas food type is a treatment.

• We can manipulate the level of social media multitasking, but we can-
not manipulate the year of study of students. So, level of social media
multitasking is a treatment, while year of study is a block.

Although we can always estimate differences between blocks, we need to be much
more cautious when inferring causality from block-level differences or from any
factor that we cannot randomise (as is the case in observational studies).

Example of observational study

Suppose we are studying whether different music streaming platforms (e.g.,
Spotify, Apple Music, YouTube Music) influence a song’s popularity. We
cannot randomly assign a song to a particular streaming platform because
artists typically release their music on multiple platforms simultaneously.
However, platform choice is still the main factor of interest.
We would analyze differences in song popularity (e.g., number of streams,
chart position) across platforms as we would for any treatment factor.
However, we must be cautious when attributing differences solely to the
platform itself because other factors could also play a role. For instance:

• Artist popularity: A well-known artist might naturally attract more
streams, regardless of the platform.

• Marketing strategies: Some platforms might promote certain songs
more aggressively.

• Release timing: Songs released during peak listening hours or days
may perform better.

• Platform demographics: Different platforms cater to different audi-
ences, which might influence engagement.

Since we cannot randomly assign songs to platforms, we cannot be certain
that observed differences in popularity are only due to the platform. In-
stead, they may be influenced by a combination of these external factors.
This is an observational study.
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Suppose we study whether different teaching methods (interactive vs. tradi-
tional) affect student performance, conducted in public and private schools.

• Teaching method is the treatment (assigned to students).

• School type is a blocking factor (cannot be randomly assigned).

If private school students perform better, we cannot conclude school type caused
the difference due to potential confounders such as socioeconomic background
or teacher quality.

Even though we control for school type, observed differences may be due to
these external factors, not just the school itself. We cannot be sure that the
observed differences are really only due to school type.

Sometimes, however, blocking variables can also be randomised. Suppose a
study is testing two medications (A vs. B) for blood pressure, experiments are
conducted in two labs (Lab 1 & Lab 2).

• Medication is the treatment (randomly assigned).

• Lab is a blocking factor (controls lab-related variability).

Patients could have been randomly assigned to labs, but if logistical constraints
prevent this, lab is used as a block. Since we only care about medication effects,
lab differences are treated as a nuisance variable. The real difference is inter-
est. We are not interested block effects on the response, only treatment effects.
Blocking factors are used to control for known sources of variation that might
obscure the treatment effect.

8.2 Choosing Blocking Factors
Any variable that might affect the response besides treatment factor should be
considered for blocking. Common blocking factors include:

• Geographic location: field, site, regions or cities that share similar eco-
nomic conditions.

• Time: experimental replication over different days or weeks. Blocking for
economic cycles or seasonal effects.

• Subject: person, plant, businesses, phenotype.
• Demographic groups: age, gender, income or education level, consumer

behavior segments.

• Equipment: container types, growth chambers.

For example, if we are testing the effectiveness of a new advertising campaign,
it would be useful to block by city or region to control for differences in local
economies, purchasing behavior, or media consumption. Similarly, if an exper-
iment measures the impact of dynamic pricing on sales, it is a good practice
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to replicate the price changes across multiple days, blocking for daily or weekly
variations in consumer spending habits. This way time accounts for these dif-
ferences rather inflating the error variance.

Likewise, if we are studying the effect of sports training programs on player per-
formance, and athletes train in different facilities with varying equipment, we
could assign a block to each training center to ensure that facility-related differ-
ences are accounted for. This prevents training location from being mistaken as
a treatment effect, allowing a clearer evaluation of the actual program’s impact.

The key takeaway is that reducing error variance increases the power of the
experiment. Thoughtful blocking design helps achieve this by accounting for
known sources of variation.

8.3 Randomised Complete Block Design
There are a few different types of randomised block designs depending on the
availability of experimental units and size of the blocks. Here we will consider the
best case scenario, where blocks are big enough to contain an equal amount of
experimental units such that each treatment occcurs exactly once within a block.
If we have a single treatment factor with 𝑎 levels, then we have 𝑎 experimental
units per block. This design is said to be balanced, each block is the same
with respect to treatments. In balanced block designs, the treatment and block
effects can be completely separated (are independent) . This greatly simplifies
the interpretation of results.

As in CRD, randomisation is still a crucial component of the design. The dif-
ference is that now 𝑎 treatments are assigned randomly to the 𝑎 experimental
units within a block, i.e. randomisation is not complete over ALL experimental
units but restricted within each block. Within each block, the experimental
units are equally likely to receive any of the 𝑎 treatments. You can see this as
CRD within each block!

Let’s see how we could randomise treatment within blocks using R. Imagine we
had four treatments (A,B,C and D). We randomise the treatments to the units
within one block like this:
units <- 1:4
rbind(sample(units,4), rep(c("A","B","C","D")))

[,1] [,2] [,3] [,4]
[1,] "3" "2" "4" "1"
[2,] "A" "B" "C" "D"

The third unit receive treatment A, the second receives B and so on. We then
repeat this for every block.
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8.4 The Pygmalion Effect
The Pygmalion effect is a psychological phenomenon that suggests when peo-
ple are held to high expectations, they tend to perform better. This applies
to, for example, teachers and students, managers and employees or coaches and
athletes. It is named after a mythological king of Cyprus, Pygmalion, who fell
in love with a sculpture he created of his ideal woman.

This article explains the concept
nicely and also briefly discusses
the study we will use later.
https://thedecisionlab.com/biases/the-
pygmalion-effect

Many experiments have found results to support this type of self-fulfilling
prophecy. Typically, they involve putting someone in charge of a group of
people, then privately telling the leader that say a few of these people are
exceptional (these people were randomly selected though). Then, later the
performance of the group is measured and if the Pygmalion effect is present,
the individuals who were marked as exceptional should have performed better.

Back in 1990, one researcher in this field, noticed that experiments like these
might involve something that is called interpersonal contrasts. When some indi-
viduals are singled out for high expectations, others might feel neglected. This
could potentially skew the results by making the others look good even though
it was just the rest that performed poorly. The researcher wanted to conduct
an experiment to test the Pygmalion effect without interpersonal contrasts.

They achieved this by applying the high expectation to an entire group and not
selected individuals within a group. Let’s have a look the exact experiment!

Example: The Pygmalion Effect in Military Training

A study conducted by Eden (1990) examined whether raising leaders’ ex-
pectations of their trainees would enhance performance, without creating
interpersonal contrast effects.
A total of 10 army companies consisting of 2 platoons each were used in
the study. Within each company, one randomly assigned platoon received
the Pygmalion treatment, while the other two served as controls. The idea
is that the assignment of the Pygmalion treatment to an entire platoon
prevents interpersonal contrasts.

1. Pygmalion Group: Platoon leaders were informed that their
trainees had exceptionally high command potential based on
pre-existing evaluations.

2. Control Group: Platoon leaders received no expectation-
enhancing information.

Over the training period, leaders in both conditions met biweekly with a
psychologist to reinforce expectations. At the end of the program, soldiers
took multiple tests which measured their performance in four areas:

• Theoretical specialty knowledge (taught by platoon leaders)
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• Practical specialty skills (taught by platoon leaders)

• Physical fitness (assessed independently)

• Target shooting (assessed independently)

A platoon is a military unit
typically consisting of 30 to 50

soldiers, led by a platoon leader
(usually a lieutenant). Several

platoons form a company, which
is a larger military unit consisting

of three to five platoons,
commanded by a company leader

(usually a captain).

First things first! We need to determine the design so we can use the appro-
priate analysis. The researcher was interested in determining the effect of the
Pygmalion effect on performance. This indicates to use that there is a single
treatment factor and that it is whether or not the Pygmalion effect was applied
(we’ll call this the Pygmalion Treatment) and the response is some measure of
performance. The text gives four possible responses! The four areas in which
the performance was tested. We’ll start with the first one as our response. So
far we know:

The name of the treatment factor
is not always obvious. It is

usually something that describes
the collection of similar

treatments created in response to
some research hypothesis or what

has been manipulated. In
biological or ecological studies, it
can be quite clear. For example,

if we had treatments high,
medium and low rainfall,

“Rainfall” is the variable we
manipulated.

Also, as before, I’ve modified the
example slightly. In the original
study, there three platoons per

company with two serving as
control and one company only

had two. So we have simplified
the design so that it is balanced.

• Response Variable: Theoretical specialty knowledge.
• Treatment Factor: Pygmalion Treatment.
• Treatment Levels (Groups): Control, Pygmalion
• Treatments: Control, Pygmalion

Now, the treatments were randomly assigned to platoons within a company.
This gives away two things, (1) the experimental unit is an entire platoon and
(2) treatments were assigned randomly within a company, i.e. a block! They
were not interested in the effect of company on performance but merely wanted
to account for possible differences between platoons in companies. So here Com-
pany is a blocking variable and the 10 companies are the blocks. Finally, on
what was the response measured? The soldiers! They are then the observa-
tional units. The paper doesn’t state how many soldiers were in each platoon
and it doesn’t really matter since the scores have to be combine to have one
measurement per experimental unit.

Here is the final summary of the design:

• Response Variable: Theoretical specialty knowledge.
• Treatment Factor: Pygmalion Treatment.
• Treatment Levels (Groups): Control, Pygmalion
• Treatments: Control, Experiment 1, Experiment 2

• Experimental Unit: Platoon (20)

• Observational Unit: Soldier

• Replicates: 10 platoons received each treatment

• Randomisation: To platoons within companies, i.e. restricted to within
blocks.
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• Design Type: Randomised Complete Block Design (CRD)

You will typically have access to the data as well to help you identify some
aspects of the design. There are two ways the data might be represented, in
long format:

Company Treat Score
C1 Pygmalion 80.0
C1 Control 63.2
C2 Pygmalion 83.9
C2 Control 63.1
C3 Pygmalion 68.2
C3 Control 76.2
C4 Pygmalion 76.5
C4 Control 59.5
C5 Pygmalion 87.8
C5 Control 73.9
C6 Pygmalion 89.8
C6 Control 78.9
C7 Pygmalion 76.1
C7 Control 60.6
C8 Pygmalion 71.5
C8 Control 67.8
C9 Pygmalion 69.5
C9 Control 72.3
C10 Pygmalion 83.7
C10 Control 63.7

or in wide format:

Company Pygmalion Control
C1 80.0 63.2
C2 83.9 63.1
C3 68.2 76.2
C4 76.5 59.5
C5 87.8 73.9
C6 89.8 78.9
C7 76.1 60.6
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C8 71.5 67.8
C9 69.5 72.3
C10 83.7 63.7

The long format represents each observation as a separate row, with treatments
recorded in a single column. This format is useful for statistical modeling and
visualization since it keeps data structured for comparisons across treatments.
You might have noticed that so far all the data sets we have used when fitting
models using aov have been in long format. You will struggle to fit the model
with a data set in wide format!

The wide format organizes data so that each unit (e.g., a company) appears
in a single row, with treatments as separate columns. This format is often
preferred for paired comparisons and summary tables.

Both formats contain the same information but serve different purposes depend-
ing on the type of analysis being performed.



Chapter 9

Assumptions

Data from randomised block designs are analysed with two-way ANOVAs. The
assumptions of a two-way ANOVA are the same as a one-way. That is,

1. Equal population variance.
2. Normal errors.
3. Independent errors.
4. No outliers.

With the addition of a block variable comes a new assumption:

5. The effects of the blocks and treatments are additive.

Simply put, it means that the we assume the treatment effects are similar in all
blocks. That if a treatment is applied in one block, the effect is the same as in
another block. For example, if we applied had a treatment factor: marketing
strategy with two treatments A and B, and we want to apply it to stores in
different economic regions (blocks), the effect of, for example, marketing strategy
A should be the same in both regions. We will check this assumption visually
as well. One way, is to plot the response against the block for each treatment.
But first! Some exploratory data analysis.
# read in data
pyg_data <- read.csv("Datasets/pygmalion_data.csv")

# look at first and last few rows
head(pyg_data); tail(pyg_data)

Company Treat Score
1 C1 Pygmalion 80.0
2 C1 Control 63.2
3 C2 Pygmalion 83.9
4 C2 Control 63.1

93



94 CHAPTER 9. ASSUMPTIONS

5 C3 Pygmalion 68.2
6 C3 Control 76.2

Company Treat Score
15 C8 Pygmalion 71.5
16 C8 Control 67.8
17 C9 Pygmalion 69.5
18 C9 Control 72.3
19 C10 Pygmalion 83.7
20 C10 Control 63.7
summary(pyg_data)

Company Treat Score
Length:20 Length:20 Min. :59.50
Class :character Class :character 1st Qu.:66.78
Mode :character Mode :character Median :73.10

Mean :73.31
3rd Qu.:79.17
Max. :89.80

Ah! We need to convert both the company and Treat variable to factors.
pyg_data$Company <- as.factor(pyg_data$Company)
pyg_data$Treat <- as.factor(pyg_data$Treat)

summary(pyg_data)

Company Treat Score
C1 :2 Control :10 Min. :59.50
C10 :2 Pygmalion:10 1st Qu.:66.78
C2 :2 Median :73.10
C3 :2 Mean :73.31
C4 :2 3rd Qu.:79.17
C5 :2 Max. :89.80
(Other):8

Nice, now we can see that we had ten replicates per treatment, two observations
per block which means 20 observations in total. Let’s go ahead and check the
the first four assumptions.
boxplot(Score~Treat, data = pyg_data)

stripchart(Score~Treat, data = pyg_data, add = TRUE, vertical = TRUE, method = "jitter", jitter = 0.1)
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Okay, the boxplots look relatively symmetric, there are no clear signs of non-
normality. They also look very similar in terms of height, the assumption of
homogeneity seems reasonable as well. Let’s have a look at the sample standard
deviations.
sd(pyg_data$Score[pyg_data$Treat == "Pygmalion"])

[1] 7.587124
sd(pyg_data$Score[pyg_data$Treat == "Control"])

[1] 6.927209

Then, we need to check the independence assumption. This is often the hardest
assumption to verify because it requires knowledge about how the data were
collected. In practice, you will need to assess independence in one of two ways:

1. Before conducting an experiment – Ideally, you would discuss the study
design with the researchers before data collection to ensure that indepen-
dence is maintained.

2. When analyzing existing data – If you are reviewing a published study,
you must rely on the authors’ description of the experimental setup to
determine whether independence is reasonable.

In this study, the researchers assumed platoons operated independently and
took steps to prevent treatment contamination:

• Randomization ensured that each platoon was independently assigned to
the Pygmalion or control condition, reducing bias.
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• Leaders were instructed not to discuss their treatment condition, prevent-
ing expectation spillover.

• Each platoon was analyzed separately, ensuring observations within treat-
ments were treated as independent.

After fitting the model, and assuming the order in which the response was
measured is the order in which it appears in the data set, we can check for any
pattern in the residuals that may indicate dependence.

Now, let’s check the new assumption of additivity. We can plot the response
against treatment and add colour-coded lines connecting the experimental units
from the same block. This is a bit tedious to do with base R (don’t worry,
we won’t expect you to code this manually) but you have to understand and
interpret the plot it produces.
# Ensure Treat is a factor with proper order
pyg_data$Treat <- factor(pyg_data$Treat, levels = c("Control", "Pygmalion"))

# Convert Treat to numeric for plotting (1 = Control, 2 = Pygmalion)
pyg_data$Treat_numeric <- as.numeric(pyg_data$Treat)

# Define colors for companies
company_colors <- rainbow(length(unique(pyg_data$Company)))
names(company_colors) <- unique(pyg_data$Company)

# Create base plot
plot(pyg_data$Treat_numeric, pyg_data$Score,

xlab = "Treatment", ylab = "Score",
main = "Pygmalion Effect by Company",
pch = 16, col = company_colors[pyg_data$Company], xaxt = "n")

# Add custom x-axis labels
axis(1, at = c(1, 2), labels = c("Control", "Pygmalion"))

# Add lines connecting observations from the same company
for(block in unique(pyg_data$Company)){

temp <- pyg_data[pyg_data$Company == block, ]
temp <- temp[order(temp$Treat_numeric), ] # Order by treatment for correct line drawing
lines(temp$Treat_numeric, temp$Score, col = company_colors[block], lwd = 2)

}
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If the assumption of additivity is met, we would expect relatively few lines to
cross, i.e. we would expect mostly parallel lines. In the plot above, it seems that
for most blocks, a low value in the control treatment is associated with a high
value in the Pygmalion treatment. There are three lines (i.e. companies) that
don’t conform to this pattern, where it seems that Pygmalion treatment did not
alter the scores or maybe even caused a reduction. It’s important to remember
that sampling variability prevents us from observing perfectly parallel lines
in practice. The observed treatment means are always subject to random
variation, which can introduce some deviations from the expected pattern.

What happens if this assumption is wrong, i.e. the blocking and treatment
factors do interact? That is the treatment effect depends on which block it is in.
Consider the following plots depicting an experiment with three treatments and
three blocks. The first panel shows an example where treatments and blocks
are additive – the lines connecting the same treatment in all blocks are parallel.
Due to variability, we would of course never actually observe such parallel lines.
In reality, the observed treatment means would be subject to random deviations
from the true population means, and with lots of variability, the lines could cross
and look more like the second panel, which is showing an example where the
additivity assumption is violated.
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With only one experimental unit per treatment in each block, as in a typical
randomised complete block design, it is difficult to know which situation we
have: the additivity assumption is violated, or there is simply a lot of random
error. The interaction effect between treatment and block is confounded with
the random error term. That is, 𝑒𝑖𝑗 in the model equation is actually the sum
of the interaction effect and the random error. So if the additivity assump-
tion is violated, 𝑒𝑖𝑗 is inflated and it will be harder to find differences between
treatments.

With some replication of
treatments within blocks, as in

generalised randomised complete
block designs (which we don’t
cover here), we can separately

estimate the interaction effects.
This is similar to what we will

see when we talk about Factorial
Experiment sin the next section.



Chapter 10

Linear model & ANOVA

Linear model
We wish to compare 𝑎 treatments and have 𝑁 experimental units arranged in
𝑏 blocks each containing 𝑎 homogeneous experimental units: 𝑁 = 𝑎𝑏. The 𝑎
treatments are assigned to the units in the 𝑗𝑡ℎ block at random. The design
(blocking and treatment factors and the randomisation) determine the structural
part of the model.

A linear model for the RBD is:

𝑌𝑖𝑗 = 𝜇 + 𝐴𝑖 + 𝐵𝑗 + 𝑒𝑖𝑗

where,

𝑌𝑖𝑗 = observation on treatment 𝑖 in block 𝑗
𝑖 = 1, … , 𝑎 and 𝑗 = 1, … , 𝑏
𝜇 = general/overall mean

𝐴𝑖 = effect of the 𝑖𝑡ℎ treatment
𝐵𝑗 = effect of the 𝑗𝑡ℎ block
𝑒𝑖𝑗 = random error with 𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎2)

𝑎
∑
𝑖=1

𝐴𝑖 =
𝑏

∑
𝑗=1

𝐵𝑗 = 0

This model says that each observation is made up of an overall mean, a treatment
effect, a block effect, and an error part. The block effect is interpreted in the
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same way as the treatment effect, it is the difference between block mean 𝑗 and
the overall mean 𝜇.

It also says that these effects are additive. Additivity means that the effect of
the 𝑖𝑡ℎ treatment on the response (𝐴𝑖) is the same regardless of the block in
which the treatment is used. Similarly, the effect of the 𝑗𝑡ℎ block is the same
(𝐵𝑗) regardless of the treatment. The additional constraint of ∑𝑏

𝑗=1 𝛽𝑗 = 0
follows the same logic as explained before.

Let’s fit this model to the Pygmalion data. For the Pygmalion experiment,
the researchers compared control to Pygmalion treatment so we have 𝑎 = 2
treatments. The number of blocks, 𝑏, was 10. In R, on the right-hand-side of
the formula, we have the treatment factor + blocking factor. The code looks
exactly the same as before, except we add the Company (blocking) variable.
pyg_model <- aov(Score ~ Treat + Company, data = pyg_data)

We can again extract the model estimates with model.table:
model.tables(pyg_model, type = "means", se = TRUE)

Tables of means
Grand mean

73.31

Treat
Treat
Control Pygmalion
67.92 78.70

Company
Company

C1 C10 C2 C3 C4 C5 C6 C7 C8 C9
71.60 73.70 73.50 72.20 68.00 80.85 84.35 68.35 69.65 70.90

Standard errors for differences of means
Treat Company
3.126 6.990

replic. 10 2

First we see the grand mean of 73.31 followed by the treatment means. Then,
we have ten block means, these are the mean scores within each block. Lastly,
we see the standard errors for the differences of means.
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Sums of squares and Analysis of variance
Now we have three sources of variability: differences between treatments, differ-
ences between blocks and experimental error. The total sum of squares can be
split into three sums of squares: for treatments, blocks, and error respectively.

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑆𝐴 + 𝑆𝑆𝐵 + 𝑆𝑆𝐸

with degrees of freedom

(𝑎𝑏 − 1) = (𝑎 − 1) + (𝑏 − 1) + (𝑎 − 1)(𝑏 − 1)

The advantage of blocking becomes apparent here. If we had not blocked,
i.e. used a completely randomised design, for example, the 𝑆𝑆𝐴 (sums of squares
for treatment) would be the same. However, in the completely randomised de-
sign, we would not be able to separate 𝑆𝑆𝐵 from 𝑆𝑆𝐸 and the combined 𝑆𝑆𝐸
would therefore be larger.

When using a RBD, part of the unexplained variation is now explained and can
be captured in the block sum of squares, 𝑆𝑆𝐵. A small 𝑆𝑆𝐸 has the advantage
of smaller standard errors, i.e. more precise estimates (for treatment effects and
treatment means) and thus it is easier to detect differences between treatments.

You can think of the SSE as the
variability among experimental
units that cannot be accounted
for by blocks or treatments.

The sums of squares are summarised in an ANOVA table.

Source SS df MS F

Treatments
A

𝑆𝑆𝐴 =
𝑏 ∑𝑖( ̄𝑌𝑖 −

̄𝑌..)2

(𝑎 − 1) 𝑆𝑆𝐴
(𝑎−1)

𝑀𝑆𝐴
𝑀𝑆𝐸

Blocks B 𝑆𝑆𝐵 =
𝑎 ∑𝑗( ̄𝑌𝑗 −

̄𝑌..)2

(𝑏 − 1) 𝑆𝑆𝐵
(𝑏−1)

Error 𝑆𝑆𝐸 =
∑𝑖𝑗(𝑌𝑖𝑗 −

̄𝑌𝑖.− ̄𝑌.𝑗+ ̄𝑌..)2

(𝑎 − 1)(𝑏 − 1) 𝑆𝑆𝐸
(𝑎−1)(𝑏−1)

Total 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 =
∑(𝑌𝑖𝑗 − ̄𝑌..)2

𝑎𝑏 − 1

Much of the table remains the same as in a one-way ANOVA, but now it includes
an additional row for the blocking variable. The sum of squares for the blocking
factor is calculated similarly to that of the treatment factor—by summing the
squared deviations of observations within each block from the block’s mean
response. The residual sum of squares is also slightly different, but you don’t
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need to worry too much about that1. Since the total SS is simply the sum of the
treatment, block, and residual SS, you can always compute SSE by subtraction.

From this ANOVA table, we can test the hypothesis of no differences between
the treatment means as before.

𝐻0 ∶ 𝜇! = 𝜇2 = … = 𝜇𝑎

Which is equivalent to testing:

𝐻0 ∶ 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑎 = 0

using the F-test which compares the mean square for treatments with the mean
square for error:

𝐹 = 𝑀𝑆𝐴
𝑀𝑆𝐸 ∼ 𝐹𝑎−1,(𝑎−1)(𝑏−1)

Notice the degrees of freedom!

What does the ANOVA table look like for the Pygmalion data? Again, we use
the summary function on the model object to obtain the table.
summary(pyg_model)

Df Sum Sq Mean Sq F value Pr(>F)
Treat 1 581.0 581.0 11.89 0.00729 **
Company 9 510.2 56.7 1.16 0.41433
Residuals 9 439.8 48.9
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Let’s first look at the degrees of freedom:

• We had 𝑎×𝑏 = 2×10 = 20 experimental units, so we should have 𝑎×𝑏−1
total degrees of freedom.

• The treatment degrees of freedom are 𝑎 − 1 = 2 − 1 = 1 and similarity,
there are 𝑏 − 1 = 10 − 1 = 9 degrees of freedom of the block effect.

• That leaves (𝑎 − 1)(𝑏 − 1) = 1 × 9 degrees of freedom for the error term.

It is always a good idea to check that the df’s match with what you expected
them to be. One serious error that happens easily is one of the factor is fitted
as continuous covariate because the levels were labelled using numbers. Hence
why we converted the categorical variables (Treat and Company) to factors.

1You can easily get there by rearranging the model equation so that 𝑒𝑖𝑗 is on the right-
hand-side, replacing the effects with the difference in terms of means and simplifying.
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The next column lists the sums of squares for the three components. The mean
squares are calculated as 𝑆𝑆

𝑑𝑓 , e.g. 581
1 = 581 for the treatment. The 𝐹 -value for

the treatment variable is the ratio of 𝑀𝑆𝑡𝑟𝑒𝑎𝑡 to the 𝑀𝑆𝐸. This is the same
as in the one-way ANOVA. R then looks up the corresponding p-value, which
is 0.00729.

So we have an very small p-value which means that we have strong evidence
against our null hypothesis of equal treatment means. We cannot conclude
that the effects are equal to zero. There is evidence to suggest that at least
one treatment resulted in a different mean score. Here, because we have two
treatments, the results indicate that the data are not compatible with a null
hypothesis of equal means. We make the following conclusion:

“There is evidence to suggest that the two treatment means are different (𝐹 =
11.89, 𝑝 = 0.0073).”

If we had more than two treatment means as is usually the case, we would
conclude:

“There is evidence to suggest that at least one treatment resulted in a different
mean response, there is evidence for a treatment effect (𝐹 = 11.89, 𝑝 = 0.0073).”

There are many different ways to say that there is a difference somewhere. For
example:

• One or more treatments had a mean response that differed from the others.
• Not all treatment means are the same; at least one is significantly different.
• The results indicate that not all treatment means are equal.

You get the idea! As long as it is clear that a ‘significant’ result indicates that
there is a difference somewhere, we don’t know where, but there is evidence for
a treatment effect.

What about the F-test for the blocking variable?
We see that the blocks accounted for a similar fraction of the sums of squares as
the other two components (just over a third). If we did not block, this variation
would be part of the SSE but then the error degrees of freedom would also be
larger (the 9 degrees of freedom would be part of the error degrees of freedom).
In fact, here, the blocking did not significantly reduce the unexplained variability,
since the F-value is close to one. The variability explained by the blocks is close
to what would be expected due to random noise.

Remember, we aren’t particularity interested in formal inference about block
effects (we knew or suspected that they were different) and we should always be
careful about interpreting the F-test for the blocking variable (as blocks typically
cannot be randomised to experimental units - see the previous chapter). We
might, however, be interested in whether blocking increased the efficiency of
the design by reducing the unexplained variation (SSE). There exists a more
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thorough method of assessing the relative efficiency of blocking - that is, relative
to if a simpler design (i.e. CRD) was used instead2. Here, however, we focus on
a simple and quick check of block efficiency using the F-ratio.

We would like the block factor to explain a lot of variation. If the mean square
of the blocking variable is larger than the error mean square we conclude that
blocking was effective (compared to a CRD).

• If 𝐹 > 1 then blocking did reduce unexplained error variance.

• If 𝐹 ≈ 1 then the blocks did not improve the power of the experiment and
you would have been equally well off with a CRD.

• If 𝐹 < 1 which happens rarely, it means that blocking did not account
for much of the variability because experimental units within blocks are
more heterogeneous than between blocks (or there are strong interactions
between blocks and treatments). Blocks actually reduced the power of the
experiment but this should really not happen if you choose your blocks
sensibly.

If blocking was not efficient, we would still leave the block factor in the model
(design dictates analysis), but we might decide not to use blocking in a similar
experiment in the future because it didn’t assist in reducing experimental error
variance and only cost us degrees of freedom.

Estimation
To obtain estimates for the treatment and block effects, we minimize the error
sum of squares (method of least squares).

𝑆𝑆𝐸 = ∑
𝑖

∑
𝑗

(𝑌𝑖𝑗 − 𝜇 − 𝐴𝑖 − 𝐵𝑗)2

𝑌𝑖𝑗 − 𝜇 − 𝛼𝑖 − 𝛽𝑗 is the observed value minus the expected value (the structural
part of the model). This difference is just the error 𝑒𝑖𝑗. If we minimise the error
sum of squares we obtain the following estimates:

̂𝜇 = ̄𝑌..

̂𝐴𝑖 = ̄𝑌𝑖. − ̄𝑌.., 𝑖 = 1 … 𝑎

̂𝐵𝑗 = ̄𝑌.𝑗 − ̄𝑌.., 𝑗 = 1 … 𝑏
2Kuehl (2000) wrote a great textbook (freely available) that explains the relative efficiency

check in detail.
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To estimate the 𝑖𝑡ℎ treatment effect we take the observed treatment mean minus
the overall mean, similarly to obtain block effect estimates.
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Chapter 11

Contrasts

After finding that there is evidence to suggest that at least two of the treatments
differed from each other (another way to say there is a treatment effect!), we want
to find out which ones differed and estimate these differences. In the Pygmalion
experiment, there were only two treatments so we know the difference is between
them. In fact, we could have used a paired t-test to analyse the data and we
would get the same results. Generally though, there will be more than two
treatments and then after concluding that there are differences, we want to
know where the differences lie.

When we have blocks in RCBD,
the observations are paired and
data from two treatments can be
analysed using a paired t-test.
When we do not have blocks, the
observations are not and data
from two treatments can be
analysed using a standard t-test.

To do that, we use the coefficients from fitting a linear regression model to esti-
mate the difference between the two treatments (as we did for CRD experiments
as well). The null hypothesis is again:

𝐻0 ∶ 𝜇𝐶 − 𝜇𝑃 = 0

where C stands for Control and P for Pygmalion. We use the lm function as in
regression.

We use the lm function when we
are primarily interested in the
coefficient estimates and
difference. We use aov() when
we want a breakdown of how
much each factor can explain of
the overall variation in the
response, and when we want a
general test for ‘are there any
difference between the
treatments’.

pyg_model_reg <- lm(Score ~ Treat + Company, data = pyg_data)
summary(pyg_model_reg)

Call:
lm(formula = Score ~ Treat + Company, data = pyg_data)

Residuals:
Min 1Q Median 3Q Max

-9.390 -3.217 0.000 3.217 9.390

Coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 66.210 5.184 12.771 4.52e-07 ***
TreatPygmalion 10.780 3.126 3.448 0.00729 **
CompanyC10 2.100 6.990 0.300 0.77069
CompanyC2 1.900 6.990 0.272 0.79191
CompanyC3 0.600 6.990 0.086 0.93348
CompanyC4 -3.600 6.990 -0.515 0.61897
CompanyC5 9.250 6.990 1.323 0.21839
CompanyC6 12.750 6.990 1.824 0.10147
CompanyC7 -3.250 6.990 -0.465 0.65303
CompanyC8 -1.950 6.990 -0.279 0.78659
CompanyC9 -0.700 6.990 -0.100 0.92243
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.99 on 9 degrees of freedom
Multiple R-squared: 0.7127, Adjusted R-squared: 0.3936
F-statistic: 2.233 on 10 and 9 DF, p-value: 0.1211

A few things to note here.

1. We are only interested in the second line starting with TreatPygmalion.
R pasted the name of the factor and the name of the treatment level
together.

2. The Control treatment was taken as the baseline (it comes first in the
alphabet).

3. The remaining lines are not of interest to us. It estimates the differences
between each block and the first and tests whether these effects are differ-
ent from zero. R doesn’t know we aren’t interested in these, so it computes
the effects and hypothesis test as if we are. We ignore this part.

4. If we didn’t know that this code was for analysing a RCBD we would
probably think that it is linear regression with two categorical variables.
Think back to the regression module, what does this intercept represent?
It represents the mean score for some treatment level and company. Since
‘C’ comes before ‘P’ in the alphabet and C1 is before everything else, the
intercept is the average score for the control group in the first block. This
is because R uses the treatment contrast parameterisation by default for
all the factors. We can change this by letting R know that the block effects
sum to zero.

pyg_model_reg2 <- lm(Score ~ Treat + C(as.factor(Company), contr.sum), data = pyg_data)
summary(pyg_model_reg2)

Call:
lm(formula = Score ~ Treat + C(as.factor(Company), contr.sum),

data = pyg_data)
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Residuals:
Min 1Q Median 3Q Max

-9.390 -3.217 0.000 3.217 9.390

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 67.920 2.211 30.725 2.01e-10 ***
TreatPygmalion 10.780 3.126 3.448 0.00729 **
C(as.factor(Company), contr.sum)1 -1.710 4.689 -0.365 0.72379
C(as.factor(Company), contr.sum)2 0.390 4.689 0.083 0.93554
C(as.factor(Company), contr.sum)3 0.190 4.689 0.041 0.96857
C(as.factor(Company), contr.sum)4 -1.110 4.689 -0.237 0.81818
C(as.factor(Company), contr.sum)5 -5.310 4.689 -1.132 0.28675
C(as.factor(Company), contr.sum)6 7.540 4.689 1.608 0.14232
C(as.factor(Company), contr.sum)7 11.040 4.689 2.354 0.04300 *
C(as.factor(Company), contr.sum)8 -4.960 4.689 -1.058 0.31775
C(as.factor(Company), contr.sum)9 -3.660 4.689 -0.780 0.45514
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.99 on 9 degrees of freedom
Multiple R-squared: 0.7127, Adjusted R-squared: 0.3936
F-statistic: 2.233 on 10 and 9 DF, p-value: 0.1211

Now, the intercept is what we expect, the mean score for the control treatment
across all blocks.
mean(pyg_data$Score[pyg_data$Treat == "Control"])

[1] 67.92

Let’s interpret the hypothesis test for the difference between the treatment
means. The estimated difference is 10.78 with a standard error of 3.126. The
test statistic is 3.448 which has a p-value of 0.00729. Look familiar? It’s the
exact same p-value we found in the ANOVA table! That is because the ANOVA
is an extension of the t-test to more than two groups and when we only have two
treatments, they are equivalent. In fact, the test statistics have the following
relationship:

𝑡2 = 𝐹

Test the result to confirm that it holds. Now, let’s return to the interpretation.
The test shows that the difference between the control and Pygmalion treatment
is statistically significant, as indicated by the extremely small p-value. This
provides strong evidence against the null hypothesis of equal means.



110 CHAPTER 11. CONTRASTS

To recall the experiment’s design: The researchers aimed to test the Pygmalion
effect while eliminating interpersonal contrasts by assigning treatments to entire
groups. Specifically, platoons within companies were used as treatment units,
and since there were 10 companies, each with 2 platoons, companies served as
blocks. The response variable, theoretical specialty knowledge, was measured
through test scores.

The results of a two-way ANOVA provide evidence of a treatment effect (𝐹 =
11.89, 𝑝 = 0.0073). More precisely, the estimated difference between the control
and Pygmalion treatment was 10.78 (s.e. = 3.13, 𝑡 = 3.45, 𝑝 = 0.0073). This
suggests that the Pygmalion effect was successful, as soldiers in the Pygmalion
group scored higher on average than those in the control group.

In an actual analysis, we would
not report both the ANOVA and

t-test since they are equivalent
when we have two treatments.

Nice! We’re done. Before we move on, I’ll summarise the results of the actual
study. The researcher had four different responses:

• Theoretical specialty knowledge (taught by platoon leaders)
• Practical specialty skills (taught by platoon leaders)
• Physical fitness (assessed independently)
• Target shooting (assessed independently)

Significant treatment effects were found for theoretical and practical specialty
scores (𝐹 = 13.74, 𝑝 < 0.01 and 𝐹 = 6.37, 𝑝 < 0.05, respectively). No signifi-
cant difference was found for physical fitness or target shooting, confirming that
the Pygmalion effect was specific to areas influenced by leader expectations!
This suggests that high expectations from others can enhance performance, par-
ticularly in areas where they have direct influence. With this in mind, I want
you to know that I believe in your potential to excel in this course and
expect nothing less. ;) On to the next section!
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Chapter 12

Introduction

So far, we have explored experiments with a single treatment factor. How-
ever, in many cases, analyzing factors one at a time does not fully explain the
behavior of the response variable. This is particularly true when factors interact,
meaning that the effect of one factor depends on the level or setting of another
factor.

A factorial experiment involves more than one treatment factor, allowing us to
study how factors interact. In a complete factorial experiment, every possible
combination of factor levels is tested. The total number of treatments is the
product of the number of levels for each factor. In other words, each treatment
is a combination of one level from each factor.

12.1 Factorial Structure vs. Experimental De-
sign

It is important to note that a factorial experiment is not a design by
itself—it is a treatment structure. The underlying design can be:

• A Completely Randomized Design (CRD)
• A Randomized Complete Block Design (RCBD)

In the social media multitasking example, suppose the researchers wanted to
know whether the effect of social media multitasking on academic performance
is mitigated by lecture format? We would ask:

Does the effect of social media multitasking on academic performance
depend on lecture format?

The experiment would still follow a Completely Randomized Design (CRD) but
now with two treatment factors instead of one.
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Similarly, if we extended the Pygmalion experiment to include an additional
factor, we would have an RCBD with two treatment factors.

12.2 Notation and Structure of Factorial Exper-
iments

In general, if an experiment has two treatment factors with 𝑎 and 𝑐 levels, then
there are 𝑎 × 𝑐 treatments. This is called an 𝑎 × 𝑐 factorial treatment structure.

To clarify the terminology:

• A treatment factor has different levels (e.g., social media multitasking:
none, texting, Facebook).

• Treatments are the combinations of factor levels (e.g., no multitasking
+ lecture format A, texting + lecture format B).

In factorial experiments, the treatment factors are said to be crossed, meaning
that all levels of one factor appear at all levels of the other factor.

12.3 Randomisation in Factorial Experiments
Randomization in factorial experiments depends on the chosen design and is
carried out similarly to single-factor experiments. In R, it is helpful to number
or name the treatments systematically.

Suppose we have two factors:

• Marketing Strategy (2 levels: 𝑚0, 𝑚1)
• Product Promotion (2 levels: 𝑝0, 𝑝1)

This creates four treatments:

𝑚0𝑝0, 𝑚0𝑝1, 𝑚1𝑝0, 𝑚1𝑝1

If we have 12 experimental units and no need for blocking, we conduct a Com-
pletely Randomized Design (CRD) as follows:
treats <- c("m0p0", "m0p1", "m1p0", "m1p1")
treats <- rep(treats, each = 3) # Repeat each treatment 3 times
treats

[1] "m0p0" "m0p0" "m0p0" "m0p1" "m0p1" "m0p1" "m1p0" "m1p0" "m1p0" "m1p1"
[11] "m1p1" "m1p1"
r1 <- sample(treats) # Randomly assign treatments

cbind(1:12, r1) # Display the assignments

r1
[1,] "1" "m0p1"
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[2,] "2" "m1p0"
[3,] "3" "m0p0"
[4,] "4" "m0p0"
[5,] "5" "m0p0"
[6,] "6" "m1p1"
[7,] "7" "m0p1"
[8,] "8" "m1p1"
[9,] "9" "m1p1"

[10,] "10" "m1p0"
[11,] "11" "m1p0"
[12,] "12" "m0p1"

This code assigns treatments randomly and prints the experimental unit num-
ber alongside its assigned treatment. If we had blocking, we would repeat the
randomization separately for each block.

12.4 Is comprehension affect by playback speed
and lecture modality?

In keeping with the theme of students, learning and teaching. Have you ever
wondered whether playback speed affects your comprehension of a lecture? Or
whether your comprehension is better with audio-only lectures such as podcast
versus recorded lectures with visuals? What about if you listen to a podcast
at double speed versus a recorded lecture at double speed, is there difference
in comprehension? to answer this question, researchers from the University of
California conducted a 2 × 2 factorial experiment.

Lecture modality and playback speed

Chen et al. (2024) conducted an experiment to find out whether visual
information improves comprehension when lectures are played at faster
speeds. Specifically, they wanted to investigate the effect of lecture modal-
ity (audio-only or audio-visual) and playback speed (1x or 2x) on compre-
hension of students and whether these factors interact. We can summarise
the research questions as follows:

1. Does lecture modality have an effect on comprehension?
2. Does playback speed have an effect on comprehension?
3. Is there an interaction effect of modality and playback speed on

comprehension?
A total of 200 undergraduate students were randomly assigned to one of
four groups:

1. Audio-only at normal speed (1x)
2. Audio-visual (with slides) at normal speed (1x)
3. Audio-only at double speed (2x)
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4. Audio-visual (with slides) at double speed (2x)
The researchers chose two lectures: one about about real estate appraisals
and another bout the history of the Roman Empire. The lectures were
either presented as audio-visual clips which consisted of presentation slides
and instructor images, and no subtitles or captions were provided. All the
graphics (maps, figures) in the slides were static. For lectures presented
as audio-only clips, only the instructor’s audio was made available.
Each student was presented both lectures in the modality and speed they
were assigned. Afterwards, they completed a comprehension test consist-
ing of 25 multiple choice questions on each topic. The average of the scores
was taken as the final measure of comprehension.

We will be using the actual data
collected but we will only be

using a subset of the information
they recorded. The authors

conducted a different analysis
which incorporates this extra

information. We will not be
doing this as the method they

used is outside th scope of this
course.

Right! Let’s begin with identifying the design. It should be clear that we
have two treatment factors: lecture modality and playback speed each with the
treatment levels. this means that we have a total of 2 × 2 = 4 treatments which
are the combinations of the treatment levels. They investigated the effect of
these factors on the comprehension of students - that means, comprehension is
the response.

• Response Variable: Comprehension

• Treatment Factors: Lecture modality and playback speed

• Treatment Levels: Lecture modality: Audio-only or Audio-visual;
Playback speed: 1x or 2x

• Treatments: Audio-only at normal speed (1x); Audio-visual at normal
speed (1x); Audio-only at double speed (2x); Audio-visual at double speed
(2x)

Each student was assigned to one the treatments indicating that students were
the experimental units. The response was also measured on each student, they
are the observational units as well. Therefore, since we had 200 students and
4 treatment groups, there was 50 students per group, the experiment had 50
replicates.

• Experimental Unit: Student (200)

• Observational Unit: Student (200)

• Replicates: 50 students per group

Lastly, we need to determine how randomisation was conducted. There is no
indication of any blocking and treatments were randomised to the whole group
of experimental units. So this is a Completely Randomised Design, specifically
it is a 2 × 2 factorial CRD.
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• Design Type: 2 × 2 factorial Completely Randomized Design (CRD)

Before we do any further analysis, we need to talk a bit about effects!
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Chapter 13

Interactions

Interactions between treatment factors are an important reason for conducting
factorial experiments. If the effect of a factor would always be the same, no
matter which other factors are present, and at what levels, it would be enough
to investigate this factor on its own in a single-factor experiment. However,
many factors interact with other factors, which means that the effects change,
depending on the levels of the other factors.

Up until now, we have spoken rather loosely about ‘effects’. But at this point,
we need to define more clearly what we mean by the effect of a treatment or
the effect of an explanatory variable. By the effect of a treatment, we mean the
change in response relative to either a reference or baseline treatment, or often
in experiments, to an overall mean response.

In regression, the effect of a continuous explanatory variable is measured by the
slope, which is the change in response for a one-unit increase in the explanatory
variable, i.e., relative to one unit less. The effect of categorical or factor variables
in regression is the change in response relative to a reference category.

In experiments, when using an ANOVA model, the effect of a treatment is mostly
measured as the change in response relative to an overall mean response.

There are different kinds of effects: main effects, interaction effects, and
random effects.

The main effect of a treatment measures the average change in response, av-
eraged over all levels of the other factors, relative to the overall mean. When
there is only a single factor in an experiment, we only have main effects.

If the effect of a factor depends on the level of another factor that is present,
then the two factors interact. The interaction effect represents the change in
response relative to the main effects with a particular treatment.

If there are multiple factors in an experiment, and the effects of one factor
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depend on the level of the other factor, i.e., the two factors interact, the (average)
effects might not give a good idea of changes in the response, or of how the
factors affect the response. In such cases, we need to study the individual
treatments more closely. We look at the combinations of factor levels with large
interaction effects.

The figure below illustrates a number of possible interaction situations in a 2×2
factorial experiment, with treatment factor A having levels a1 and a2, and factor
B having levels b1 and b2. To determine whether main effects of A are present,
we must ask whether the average response changes when moving from a1 to a2,
and similarly for main effects of B.

To determine whether interaction effects are present, we must ask whether
the change in response when moving from a1 to a2 depends on the level of B.
Main effects and interaction effects can both be present simultaneously.

Before we do anything, orient yourself. What is represented by each axis, how
is the graph differentiating between treatment factors? In the figure below, the
response is on the y-axis and we have the levels of treatment factor A on the
x-axis, the levels of B are denoted by the colour of the line.

Let’s start with (a). The main effect of A is the average change in response -
averaged over all levels of the other factors. Essentially, we need to determine
what happens to the response when we ignore the levels of B. To do this, we
have to calculate the average of the points at a1 and separately, at a2. When
points in a line are eveny distributed, the average is the mid-point. If you do this
for both levels of A and connect the dots, you will have drawn a flat horizontal
line. Now, going from a1 to a2, what happens to the response? In other words,
does the average response change? No, there is n change which means there is
no main effect of factor A.

Going through the same motions for factor B, reveals that going from b1 to b2
increases the mean response. There is a main effect of factor B. What about an
interaction effect? We ask: does the effect of A on the response change when
we consider the levels of the other factor? now we do not avearge over the other
factor, we take it into account. Looking at the plot, if we focus on the red line
and go from a1 to a2, nothing happens to the response. If we focus on the black
line, the same (i.e. nothing) happens to the response as well. If we reverse this
and focus on the points at a1, going from b1 (red) to b2 (black) increases the
response. At a2, the response increases as well by the same amount. So nothing
changed when we considered the other factors, there is no interaction.

Now, consider plot (e).

• Averaging the response at a1 and a2 results in a horizontal line again. No
main effect of factor A.

• Averaging the response at b1 and b2, leads to the same conclusion as
before. Going from b1 to b2, increases the response. There is a main
effect of factor B.
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• If we focus on the red line (b1), going from a1 to a2 increases the response.
However, at b2, going from a1 to a2 decreases the response! The effect
of treatment factor A depends on the level of B, they interact with each
other.

So does this mean that A and B have no effect on the response? No, they both
affect the response, their effects, however, depend on the level of the other factor
present.

Plot (e) demonstrates clearly why sometimes main effects cannot be understood
or interpreted when interactions are present. In such a case, the interaction plot
is very helpful to illustrate the effects. Try deciding for the other plots whether
there are main effects for factor A and B and whether A and B interact. The
answers are given in the figure caption.
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Figure 13.1: Interaction plots for six hypothetical 2 × 2 factorial experiments.
(a) only main effect of B, (b) no main effects and no interaction effects, (c)
only main effect of A, (d) main effect of A and main effect of B, (e) interaction
between A and B, but both main effects are 0, (f) main effect of B, small main
effect of A, A and B interact.

Interaction effects are calculated as the difference between the treatment mean
and the sum of the main effects. To express this more precisely, it is useful to
write down the model.
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13.1 Can going for a brief walk help with mem-
ory performance?

We often hear about the benefits of exercise for physical health, but what about
its impact on learning and memory? Would taking a brisk 10-minute walk before
studying help us to remember more?

Researchers set out to explore this question by testing whether a short bout of
exercise before learning could enhance memory performance. They had students
either walk or sit before studying a list of words and then predict how well they
would remember them. Later, the students took a recall test to see how much
they actually retained.

Before studying, some students took a 10-minute brisk walk, while others re-
mained seated and inactive. After this, everyone studied a list of words and
rated how well they thought they would remember them (Judgements of Learn-
ing, or JOLs). Later, they took a free recall test to see how many words they
actually remembered. The researchers wanted to find out if walking before
studying could boost memory and whether students were aware of any benefits.

Warning

Salas, Minakata, and Kelemen (2011) conducted a study to examine
whether a brief bout of aerobic exercise influences memory performance
and judgements of learning (JOLs).
A total of 80 college students participated in a 2 × 2 factorial between-
subjects design where they were randomly assigned to one of four condi-
tions:
Walking-Walking: Participants walked before both encoding and retrieval.
Walking-Sitting: Participants walked before encoding but sat before re-
trieval. Sitting-Walking: Participants sat before encoding but walked
before retrieval. Sitting-Sitting (Control): Participants sat before both
encoding and retrieval.
After the activity, all students studied 30 English nouns, provided imme-
diate JOLs, and then took a free recall test
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Model for Factorial
Experiments

Assuming we have a continuous response variable for which we assume a normal
distribution, no blocking factors and a factorial experiment with two treatment
factors, the following model is plausible:

𝑌𝑖𝑗𝑘 = 𝜇 + 𝐴𝑖 + 𝐶𝑗 + (𝐴𝐶)𝑖𝑗 + 𝑒𝑖𝑗𝑘

where 𝑌𝑖𝑗𝑘 is the 𝑘𝑡ℎ observation on the (𝑖𝑗)𝑡ℎ treatment combination and

𝑌𝑖𝑗 = observation on treatment 𝑖 in block 𝑗
𝜇 = general/overall mean

𝐴𝑖 = main effect of the 𝑖𝑡ℎ level of A
𝐴𝑖 = main effect of the 𝑗𝑡ℎ level of C

(𝐴𝐶)𝑖𝑗 = interaction between the 𝑖𝑡ℎ level of A and the 𝑗𝑡ℎ level of C.
𝑒𝑖𝑗𝑘 = random error with 𝑒𝑖𝑗𝑘 ∼ 𝑁(0, 𝜎2)

Note that (AC) is a single symbol and does not mean the interpaction
is the product of the two main effects.

𝜇 + 𝐴𝑖 + 𝐶𝑗 + (𝐴𝐶)𝑖𝑗 is the structural part of the model which describes the
mean or expected response with treatment 𝑖𝑗, i.e. at the 𝑖𝑡ℎ level of factor A
and 𝑗𝑡ℎ level of factor C. Depending on the estimates for the main effects, each
treatment will have a different estimated mean response. For every level of A
there is a main effect, the 𝐴𝑖’s. For every level of factor B there is a main
effect, 𝐵𝑖. For every combination of A and B levels there is an interaction effect,
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(𝐴𝐶)𝑖𝑗. So the model implies that each treatment mean is made up of an overall
mean, two main effects and and interaction term.

14.1 Replication

Replication is crucial in any experiment! Without replication, we cannot es-
timate the experimental error variance (𝜎2), which is essential for assessing
variability and conducting hypothesis tests.

If we only have one observation per treatment, that observation becomes the
treatment mean. Since we cannot compute deviations from the treatment mean,
there is no estimate of error variance. This means that while we can technically
estimate the model parameters, the model itself is practically useless—we cannot
perform hypothesis tests without an estimate of error variance. And if we can’t
test anything, what’s the point?

In factorial experiments, the situation gets even worse when we don’t replicate
treatments. Specifically, we can’t calculate the interaction effect. In general,
the interaction effect is calculated as the difference between the treatment mean
and the sum of the main effects and the overall mean:

(𝐴𝐵)𝑖𝑗 = ̄𝑌𝑖𝑗 − (𝜇 + 𝐴𝑖 + 𝐵𝑗)

Now consider the first plot in the series below. There is only one observation
in the hypothetical treat 𝑖 = 1 and 𝑗 = 3. That means that the treatment
mean ̄𝑌𝑖𝑗 is just the mean of this single observation. We can’t calculate any
deviations from this mean with only one observation as we usually would for
the error variance. We always need to calculate an error term and this is always
calculated as the deviation of the observation to the next closest mean. With
only one observation per treatment, the next closest mean to that observation
is the sum of the main effects: 𝜇 + 𝐴𝑖 + 𝐵𝑗. But wait, that means the error
term is also the interaction term since the treatment mean and the observation
are the same? Jup! Now you see the problem. With no replication, the error
term and the interaction effect are confounded.
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Figure 14.1: How is the interaction effect calculated? (a) only one observation,
interaction effect confounded with error term, cannot estimate interaction effect;
(b) large interaction present; (c) interaction statistically not discernable (very
small).

Have a look at the second plot. Now we have five observations within the
treatment. We can calculate the 5 error terms:

𝑟13𝑘 = 𝑌13𝑘 − ̄𝑌13

and we can calculate the interaction effect:

( ̂𝐴𝐵)13 = ̄𝑌13 − ( ̂𝜇 + ̂𝐴1 + �̂�3)

They are no longer the same thing, they are separable! The interaction effect
for this treatment is quite big if you look at the difference visually. For the last
plot, there are also five observations, but now the deviation of the treatment
mean from the sum f the main effects is almost zero; it’s just due to random
variation. The interaction effect is too small to detect statistically.

14.2 Parameter estimation
The maximum likelihood/least squares estimates are found by minimizing the
error or residual sum of squares:

𝑆 = ∑
𝑖𝑗𝑘

(𝑌𝑖𝑗𝑘 − 𝜇 − 𝛼𝑖 − 𝛽𝑗 − (𝛼𝛽)𝑖𝑗)2

The solutions to these equations are the least squares estimates:

̂𝜇 = ̄𝑌...
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̂𝐴𝑖 = ̄𝑌𝑖.. − ̄𝑌..., 𝑖 = 1, … , 𝑎

̂𝐶𝑗 = ̄𝑌.𝑗. − ̄𝑌..., 𝑗 = 1, … , 𝑐

( ̂𝐴𝐶)𝑖𝑗 = ̄𝑌𝑖𝑗. − ̄𝑌𝑖.. − ̄𝑌.𝑗. + ̄𝑌..., 𝑖 = 1, … , 𝑎, 𝑗 = 1, … , 𝑐

The main effects are as before, except that now they refer to differences between
row or column means ([Figure 6.3]) and the overall mean. The interaction effects
are estimated as the differences between treatment means and the sum of the
main effects.

14.3 Back to the example
Let’s fit this model to the data of the playback and lecture modality experiment.
This time, we have access to the actual data collected! Let’s explore the data
and check our assumptions. The assumptions are the same as in a one-way
ANOVA. That is normality of errors, equal population variances, independent
errors and no outliers.

As always we start by reading in our data, checking that it has been read in
correctly and looking at some descriptive statistics.
data <- read.csv("Datasets/Exp2DataPlayback.csv")

head(data)

Participant.ID Condition Speed Content.Type Accuracy
1 945445adf5 1x Audio-Visual 2 Audio-Visual 42
2 23afb88ef3 1x Audio 1 Audio-Only 56
3 1bc24e0480 1x Audio 1 Audio-Only 62
4 4fbdbd41a5 1x Audio 1 Audio-Only 44
5 442adf227a 1x Audio 1 Audio-Only 56
6 3ca9d09e2e 1x Audio-Visual 2 Audio-Visual 48

The data set contains 5 columns:

1. Participant.ID – This column contains a unique identification code for
each participant in the study.

2. Condition – Indicates the experimental condition or treatment, which
includes both playback speed (1x or 2x) and content type (Audio-Only
or Audio-Visual).
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3. Speed – A numeric column that explicitly represents the playback speed,
with 1 for normal speed (1x) and 2 for double speed (2x).

4. Content.Type – Specifies whether the participant received Audio-Only
or Audio-Visual content.

5. Accuracy– The participant’s performance score, representing comprehen-
sion accuracy.

summary(data)

Participant.ID Condition Speed Content.Type
Length:200 Length:200 Min. :1.0 Length:200
Class :character Class :character 1st Qu.:1.0 Class :character
Mode :character Mode :character Median :1.5 Mode :character

Mean :1.5
3rd Qu.:2.0
Max. :2.0

Accuracy
Min. :14.00
1st Qu.:42.00
Median :54.00
Mean :52.78
3rd Qu.:64.00
Max. :90.00

From the summary, you should notice a few things:

• All the columns are read in as character values except Speed and Accuracy.
We need the relevant columns to factors if we want to use them in our
analysis.

• Speed and Accuracy seem to be read in as numeric values. This makes
sense for Accuracy but not Speed! Speed is a categorical variable with
levels 1x and 2x, we need to correct this.

data$Condition <- factor(data$Condition)
data$Content.Type <- factor(data$Content.Type)
data$Speed <- factor(data$Speed)

summary(data)

Participant.ID Condition Speed Content.Type
Length:200 1x Audio :50 1:100 Audio-Only :100
Class :character 1x Audio-Visual:50 2:100 Audio-Visual:100
Mode :character 2x Audio :50

2x Audio-Visual:50
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Accuracy
Min. :14.00
1st Qu.:42.00
Median :54.00
Mean :52.78
3rd Qu.:64.00
Max. :90.00

Great, now we can see that each treatment was replicated 50 times as we ex-
pected. To check our assumptions we start as always by plotting the response
against treatments.
boxplot(Accuracy ~ Condition, data = data,

ylab = "", main = "", las = 1)

# we could also have specified the first argument as Accuracy ~ Content.Type * Speed

stripchart(Accuracy ~ Condition, data = data, vertical = TRUE, add = TRUE, method = "jitter")

1x Audio 2x Audio

20

40
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There are no clear signs of deviation from normality, the box-plots look relatively
symmetric. We could plot Q-Q plots for each treatment as well. Let’s do that
for two of the treatments.
par(mfrow=c(1,2)) # splitting the plotting window into 1 row with 2 columns

qqnorm(data$Accuracy[data$Condition == "1x Audio"], pty = 4, col ="blue", main = "1x Audio")
qqline(data$Accuracy[data$Condition == "1x Audio"], col = "red")
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qqnorm(data$Accuracy[data$Condition == "1x Audio-Visual"], pty = 4, col ="blue", main = "1x Audio-Visual")
qqline(data$Accuracy[data$Condition == "1x Audio-Visual"], col = "red")
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No worrisome patterns! Next, the box-plots also suggest that there are no out-
liers and there are no clear indications that the assumption of equal population
variance is not reasonable. Let’s have a look a the standard deviations.
sort(tapply(data$Accuracy, data$Condition, sd))

1x Audio-Visual 1x Audio 2x Audio 2x Audio-Visual
13.71690 14.01084 14.93064 16.76386

The ratio of the smallest to largest is roughly 1.22 which is much smaller than
five. Lastly, we need to check the assumption of independence. We start by
assuming that the order in which the data are in the data set is the order in
which the measurements were taken and we construct a Cleveland dot chart.
dotchart(data$Accuracy, ylab = "Order of observation", xlab ="Post treatment test score")
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No clear patterns in the measurements, so no reason to suspect any dependence
between successive measurements. The students were randomly assigned to each
group and there are no other reasons to believe that independence was violated
based on the description of the experiment.

With all the assumptions checked, we can move onto fitting the linear model to
our data and inspecting the model estimates. Here is the model equation:

Accuracy𝑖𝑗𝑘 = 𝜇 + Speed𝑖 + Content.Type𝑗 + (Speed:Content.Type)𝑖𝑗 + 𝑒𝑖𝑗𝑘

where,

𝑖 = 1, 2 and 𝑗 = 1, 2
𝑒𝑖𝑗𝑘 = random error with 𝑒𝑖𝑗𝑘 ∼ 𝑁(0, 𝜎2)

In R, we fit the model like this:
model <- aov(Accuracy ~ Speed + Content.Type + Speed:Content.Type, data = data)
model.tables(model, type = "means", se = TRUE)

Tables of means
Grand mean

52.78

Speed
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Speed
1 2

54.94 50.62

Content.Type
Content.Type
Audio-Only Audio-Visual

49.10 56.46

Speed:Content.Type
Content.Type

Speed Audio-Only Audio-Visual
1 50.32 59.56
2 47.88 53.36

Standard errors for differences of means
Speed Content.Type Speed:Content.Type
2.108 2.108 2.981

replic. 100 100 50

R allows a convenient shorthand for this type of model. Instead of typing
out all three terms, you can shorten the right hand side of the formula to
Speed*Content.Type. The * operator indicates to R that we want main effects
and interaction effects. Try it yourself to see that you get the same result.

We extract the treatment means as before. The grand mean is shown first. Now
with a factorial treatment structure, we get the mean values for each level of
the treatment factors included and the treatment means. In the output below,
we see the means of the 1x and 2x speed followed by the means for the levels
of content type. Lastly, the treatment means are presented in a 2 by 2 matrix
format. The treatment “1x Audio Only” had a mean accuracy of 50.32, “2x
Audio-Only” mean response is 47.8, and so on. And then lastly, the standard
errors for differences between means.

We can also extract the estimated effects as before.
model.tables(model, type = "effects", se = TRUE)

Tables of effects

Speed
Speed

1 2
2.16 -2.16

Content.Type
Content.Type
Audio-Only Audio-Visual



132 CHAPTER 14. MODEL FOR FACTORIAL EXPERIMENTS

-3.68 3.68

Speed:Content.Type
Content.Type

Speed Audio-Only Audio-Visual
1 -0.94 0.94
2 0.94 -0.94

Standard errors of effects
Speed Content.Type Speed:Content.Type
1.490 1.490 2.108

replic. 100 100 50

First we get the main effects for Speed and Content.Type. Then we get the
interaction effects and standard errors. Let’s check that we understand how
these interaction effects are calculated. Remember:

(𝐴𝐵)𝑖𝑗 = ̄𝑌𝑖𝑗 − (𝜇 + 𝐴𝑖 + 𝐵𝑗)

So for treatment 𝑖 = 1 and 𝑗 = 1, the equation becomes:

̂(𝐴𝐵)11 = ̄𝑌11 − ( ̂𝜇 + ̂𝐴1 + �̂�1)

We go by the dimensions of the matrix returned by R, so then treatment 𝑖 = 1
and 𝑗 = 1 is “1x Audio-Only”. Substituting the estimated values:

(𝐴𝐵)11 = 50.32 − (52.78 + 2.16 − 3.68)
= −0.94

Which is what R outputs as well. Now, we want to ask is there evidence for an
interaction effect? To do this we need to construct the ANOVA table.
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ANOVA

The model for a factorial experiment with two treatment factors was:

𝑌𝑖𝑗𝑘 = 𝜇 + 𝐴𝑖 + 𝐶𝑗 + (𝐴𝐶)𝑖𝑗 + 𝑒𝑖𝑗𝑘

If we move 𝜇 to the left-hand side of the equation, we get:

𝑌𝑖𝑗𝑘 − 𝜇 = 𝐴𝑖 + 𝐶𝑗 + (𝐴𝐶)𝑖𝑗 + 𝑒𝑖𝑗𝑘

Now, each of the terms on the RHS is a deviation from a mean.

• The main effects come from the overall mean 𝜇,

• The interaction effects from 𝜇 + 𝐴𝑖 + 𝐶𝑗,

• The error terms from the treatment means.

We can square and sum the corresponding observed deviations and obtain sums
of squares. For a balanced factorial experiment, the total sum of squares on
the LHS can be split into four parts, corresponding to:

1. Main effects of factor A,
2. Main effects of factor C,
3. Interaction between A and C effects,
4. Error.

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑆𝐴 + 𝑆𝑆𝐶 + 𝑆𝑆𝐴𝐶 + 𝑆𝑆𝐸

The degrees of freedom for these sums of squares are:
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𝑎𝑏𝑛 − 1 = (𝑎 − 1) + (𝑏 − 1) + (𝑎 − 1)(𝑏 − 1) + 𝑎𝑏(𝑛 − 1)

where 𝑛 is the number of replicates per treatment. The degrees of freedom on
the right-hand side add up to the total degrees of freedom. Once again, we
summarise all this in a table.

ANOVA Table
The following table summarizes the partitioning of variation:

Source SS df MS F

A Main
Effects

𝑆𝑆𝐴 =
𝑛𝑏 ∑𝑖( ̄𝑌𝑖.. −

̄𝑌...)2

(𝑎 − 1) 𝑀𝑆𝐴
𝑀𝑆𝐴
𝑀𝑆𝐸

C Main
Effects

𝑆𝑆𝐶 =
𝑛𝑎 ∑𝑗( ̄𝑌.𝑗. −

̄𝑌...)2

(𝑏 − 1) 𝑀𝑆𝐶
𝑀𝑆𝐶
𝑀𝑆𝐸

AC
Interactions

𝑆𝑆𝐴𝐶 =
𝑛 ∑𝑖𝑗( ̄𝑌𝑖𝑗. −

̄𝑌𝑖.. − ̄𝑌.𝑗. +
̄𝑌...)2

(𝑎 − 1)(𝑏 − 1) 𝑀𝑆𝐴𝐶
𝑀𝑆𝐴𝐶
𝑀𝑆𝐸

Error 𝑆𝑆𝐸 =
∑𝑖𝑗𝑘(𝑌𝑖𝑗𝑘 −

̄𝑌𝑖𝑗.)2

𝑎𝑏(𝑛 − 1) 𝑀𝑆𝐸 -

Total 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 =
∑𝑖𝑗𝑘(𝑌𝑖𝑗𝑘 −

̄𝑌...)2

𝑎𝑏𝑛 − 1 - -

There are three F-tests in this ANOVA table.

1. 𝐻𝐴𝐵 ∶ (𝛼𝛽)𝑖𝑗 = 0 for all 𝑖 and 𝑗 (Factors A and B do not interact)
2. 𝐻𝐴 ∶ 𝛼𝑖 = 0 𝑖 = 1, … , 𝑎 (Factor A has no main effects)
3. 𝐻𝐵 ∶ 𝛽𝑗 = 0 𝑗 = 1, … , 𝑏 (Factor B has no main effects)

The alternative hypothesis is, in each case, that at least one of the parameters
considered is non-zero.

While discussing interactions, we saw that sometimes, with strong interaction
effects, the main effects of a factor may disappear (be close to zero). But this
does not mean that the factor has no effect. On the contrary, it has an effect on
the response; the effects just differ over the levels of the other factor and may
average out.
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Therefore, we usually start by testing the interaction effects. If there is evidence
for the presence of interactions, we have to examine the main effects with this
in mind, i.e., be careful with the interpretation of the main effects. Some people
say that it becomes meaningless to test for main effects if there is evidence of
interactions. However, this depends on what we want to know. The main effects
still tell us whether or not the average response changes with changing levels of
the factor.

The F-ratio always has the mean square for error in the denominator. As
before, it is a ratio of two variance estimates, and in each case, it can be seen as
a signal-to-noise ratio: how large are the effects relative to the experimental
error variance?

15.1 Back to the example
Before we inspect the ANOVA table for the working example, we need to check
the assumptions about the errors after model fitting. We do this by inspecting
the residuals.
par(mfrow = c(1,2))
plot(model, which = 1)
plot(model, which = 2)
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There are no clear violations, in the first plot, the residuals appear to be centered
around zero and the spread is reasonably equal across groups. The second plot
is a Q-Q plot of the residuals which shows nothing worrisome. Remember we
can also plot a histogram of the residuals to check normality.
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For the independence assumption, we construct the dot chart once again but
with the residuals.
dotchart(model$residuals) # note the different way of extracting residuals!
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The y-axis is messy but we can ignore that, it shows the index of each observation
and there are 200 hence why it overlaps so much. The residuals look uniform,
there are no systematic patterns or trends in the plot.

Let’s see what the ANOVA table looks like for our working example.
summary(model)

Df Sum Sq Mean Sq F value Pr(>F)
Speed 1 933 933.1 4.201 0.041724 *
Content.Type 1 2708 2708.5 12.195 0.000592 ***
Speed:Content.Type 1 177 176.7 0.796 0.373485
Residuals 196 43532 222.1
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Verify that the degrees of freedom are what you expected! First, we look at the
interaction. The F-value is quite small which leads to a large p-value of 0.37.
This means that we really have no evidence against the null hypothesis that the
factors interact. There is some evidence for a main effect of Speed but there is
much stronger evidence as indicated by the small p-value for a main effect of
lecture modality.
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Contrasts

There are two approaches to analysing data from experiments. The first is
to construct a set of a-priori contrasts, test these, and perhaps afterwards use
unplanned comparisons to see if there are any other interesting treatment effects
or differences that we might want to follow up with in a future experiment.

The second approach is an analysis of variance (ANOVA). This usually tests
much more general hypotheses about the presence of main and interaction effects.
The two approaches are not mutually exclusive, but if the questions we are
interested in are not answered by an analysis of variance, we should concentrate
on the contrasts. The two approaches may also give what seem to be different
answers.

For example, from the ANOVA F-test, we may see no evidence for interactions,
but if we look at specific contrasts for interactions, there is evidence. This
can happen; it is not a mistake in the methods, it is just a difference in the
hypotheses that are being tested.

Often, an ANOVA is expected in journal publications and research reports, even
if it does not answer the specific research questions. The more specific questions
are answered by constructing confidence intervals or tests for contrasts.

Let’s revisit the specific research questions for the working example:

1. Does lecture modality have an effect on comprehension?
2. Does playback speed have an effect on comprehension?
3. Is there an interaction effect of modality and playback speed on compre-

hension?

With these question, conducting an ANOVA is enough. We simply want to
know if there are any main effects or interaction effects. We have answered that
with the ANOVA above. But what if the questions were a bit more specific:

1. Does audio-visual content increase comprehension?
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2. Does increased playback speed decrease comprehension?
3. Is the effect of playback speed improved by audio-visual content?

So far we have only contrasted two treatments. Sometimes we want to compare
groups of treatments to one another. More generally, a contrast is defined as a
linear combination of the parameters where the coefficients add up to zero:

𝐿 =
𝑎

∑
1

ℎ𝑖𝐴𝑖

such that ∑𝑎
1 ℎ𝑖 = 0. This ensures a fair comparison. For example, in a com-

parison of two group means we have:

𝐿 = 𝜇1 − 𝜇2 = 1 × 𝜇 + (−1) × 𝜇2

Here, the coefficients are ℎ1 = +1 and ℎ2 = −1 which sum to zero. This simple
difference is the simplest form of a contrast. Effectively, ∑𝑎

1 ℎ𝑖 = 0 represents
the null hypothesis, that the difference equals 0.

Let’s start with the first question. Remember the treatments were:

1. 1x Audio-Only (1AO)
2. 2x Audio-Only (2AO)
3. 1x Audio-Visual (1AV)
4. 2x Audio-Visual (2AV)

To answer the first question, our contrast should compare Audio-Visual
vs. Audio-Only and we do this by averaging over the levels of playback speed.

First we compute the average response for the two levels of content type, AV
and AO.

(𝜇1𝐴𝑉 + 𝜇2𝐴𝑉 )
2

(𝜇1𝐴𝑂 + 𝜇2𝐴𝑂)
2

Now we are comparing groups of means. The first group contains the means
for all treatments that included Audio-Visual level and the second contains the
Audio-Only level. We are asking whether the AV level increased comprehension.
So we are testing:

We could specify the difference
either way, that is AO - AV.

Then we would be doing a
one-sided lower tailed test.

𝐻0 ∶ (𝜇1𝐴𝑉 + 𝜇2𝐴𝑉 )
2 = (𝜇1𝐴𝑂 + 𝜇2𝐴𝑂)

2
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𝐻1 ∶ (𝜇1𝐴𝑉 + 𝜇2𝐴𝑉 )
2 > (𝜇1𝐴𝑂 + 𝜇2𝐴𝑂)

2 <=> (𝜇1𝐴𝑉 + 𝜇2𝐴𝑉 )
2 −(𝜇1𝐴𝑂 + 𝜇2𝐴𝑂)

2 > 0

The coefficients of the contrast sum to zero:

(𝜇𝐴𝑉 1 + 𝜇𝐴𝑉 2) − (𝜇𝐴𝑂1 + 𝜇𝐴𝑂2)
2

(1)𝜇𝐴𝑉 1 + (1)𝜇𝐴𝑉 2 + (−1)𝜇𝐴𝑂1 + (−1)𝜇𝐴𝑂2
2

(0.5)𝜇𝐴𝑉 1 + (0.5)𝜇𝐴𝑉 2 + (−0.5)𝜇𝐴𝑂1 + (−0.5)𝜇𝐴𝑂2
0.5 + .0.5 − 0.5 − 0.5 = 0

This is a linear combination of the model parameters. What does the contrast
and coefficients look like for the second question? To test whether playback
speed decreases comprehension, we need to compare treatments at 1x speed
vs. 2x speed:

(𝜇1𝐴𝑉 + 𝜇1𝐴𝑂)
2 − (𝜇2𝐴𝑂 + 𝜇2𝐴𝑉 )

2
The coefficients sum to zero as before. This might be confusing but we are
simply grouping treatments together and comparing them. To compute these
contrasts in R, we first fit the model using lm() and extract the treatment means
using emmeans from the emmeans package.
model_reg <- lm(Accuracy ~ Content.Type * Speed, data = data)

means <- emmeans(model_reg, ~Content.Type * Speed)

means

Content.Type Speed emmean SE df lower.CL upper.CL
Audio-Only 1 50.3 2.11 196 46.2 54.5
Audio-Visual 1 59.6 2.11 196 55.4 63.7
Audio-Only 2 47.9 2.11 196 43.7 52.0
Audio-Visual 2 53.4 2.11 196 49.2 57.5

Confidence level used: 0.95

The emmeans function returns the treatment means, the standard error, degrees
of freedom and the bounds of 95% confidence interval. Now we want to perform
the two contrasts using the means saved in the object we created, means. First,
note the order in which emmeans outputs the treatments:

AO1, AV1, A02, AV2.
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We are going to use this order and the coefficients were determined earlier to
perform the ocntrasts with the function contrast() also from the package
emmeans:
contrast(means,

list(
c1 = c(-1,1,-1,1)/2, # AV - AO
c2 = c(1,1,-1,-1)/2 # 2x - 1x

),
by = NULL, side = ">")

contrast estimate SE df t.ratio p.value
c1 7.36 2.11 196 3.492 0.0003
c2 4.32 2.11 196 2.050 0.0209

P values are right-tailed

We supply the emmeans object means and then a list of contrasts we call c1 and
c2 corresponding to the first and second question. Each contrast consists of the
coefficients in the order in which the means appear in the means object and the
scaling by 2. Then we need to specify by = NULL because we have manually
coded the contrasts and don’t need to specify by which factor the contrasts
should made. Lastly, we specify the type of test we want, that is, is it one
sided or two sided. If it is one-sided, in which direction? We have specifically
constructed the contrasts so that both are “one-sided greater than”.

The output shows the estimate of each contrast, the standard error of the differ-
ence in means, t-value and associated p-value. For the first contrast we see the
difference in comprehension scores between the Audio-Visual and Audio-Only
groups was 7.36, this means that the average response in the Audio-Visual group
was higher than the average response in the Audio-Only group. We see that the
p-value to test this contrast is 0.0003 which is extremely small, so it is unlikely
that the difference in mean response is due to chance. There is strong evidence
to indicate that the audio-visual type increased the mean response, the estimate
of this the difference between groups is 7.36% (𝑡 = 3.492, 𝑑𝑓 = 196, 𝑝 = 0.0003).

For the second contrast, the p-value still provides sufficient evidence against the
null hypothesis that the difference is zero but it is not as strong as for the first
contrast. However, we are still satisfied with the evidence against 𝐻0. The 2x
speed decreased the average accuracy (averaged over the levels of content type)
by 4.32% (𝑡 = −2.050, 𝑑𝑓 = 196, 𝑝 = 0.021).

When we have factors with two levels (as we do here) and we conduct two
sided contrasts, then the contrast is equivalent to testing for the presence of
main effects which what the ANOVA table does! Remember we said that the
ANOVA is an extension of the t-test and with two levels. Let’s go through this
step-by-step:

• We conducted one-sided tests.
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• If we conducted two-sided tests, the results would be the same as in
ANOVA table.

• This is because when we have two levels per treatment factor, the contrasts
are equivalent to testing whether there are main effects of Speed and
Content.Type.

Since we conducted one-sided tests, the p-value is has been split between the
tails. To get to the value of the p-value for a two-sided tests, we multiply the
one-sided p-value by 2.
# For AV - AO = 0

0.0003*2

[1] 6e-04
# For 1 - 2 = 0

0.0209 * 2

[1] 0.0418

Check that these are the same as in the ANOVA table. The test statistics are
also related in this case, 𝑡2 = 𝐹 .

Let’s answer the third question. Since we have two levels per factor, this question
is asking about the interaction. The contrast for the interaction should compare
the difference between audio-visual and audio-only in the two levels of playback
speed:

At 1x playback speed, the effect of content type is given by:

(𝜇𝐴𝑉 1 − 𝜇𝐴𝑂1)

At 2x playback speed, the effect of content type is given by:

(𝜇𝐴𝑉 2 − 𝜇𝐴𝑂2)

Now to examine whether the effect of content type is consistent across playback
speeds, we compute:

(𝜇𝐴𝑉 1 − 𝜇𝐴𝑂1) − (𝜇𝐴𝑉 2 − 𝜇𝐴𝑂2)
= 𝜇𝐴𝑉 1 − 𝜇𝐴𝑂1 − 𝜇𝐴𝑉 2 + 𝜇𝐴𝑂2

This contrast assesses whether the difference between Audio-Visual and Audio-
Only is the same at 1x and 2x speeds.

We are not dividing by two
because we are not averaging
across conditions, we are
computing the difference of two
differences.
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contrast(means,
list(
c3 = c(-1, 1, 1,-1) # interaction

),
by = NULL)

contrast estimate SE df t.ratio p.value
c3 3.76 4.22 196 0.892 0.3735

We get the same p-value as in the ANOVA table which indicates a lack of
evidence against the null hypothesis, there is no evidence to suggest that the
two factors interact (𝑡 = 0.892, 𝑑𝑓 = 196, 𝑝 = 0.374).

In practice, we would test the interaction first and then interpret the main
effects if there is evidence to support their presence. Here we have done it this
way around purely for educational purposes.

We can also visualise the interaction (especially useful for understanding the
interaction if there is evidence for one!). There is a built-in function in R that
can do this for us, but it will be useful to construct the plot from scratch to
ensure you understand what it visualises.

Have a look at the data set again.
head(data)

Participant.ID Condition Speed Content.Type Accuracy
1 945445adf5 1x Audio-Visual 2 Audio-Visual 42
2 23afb88ef3 1x Audio 1 Audio-Only 56
3 1bc24e0480 1x Audio 1 Audio-Only 62
4 4fbdbd41a5 1x Audio 1 Audio-Only 44
5 442adf227a 1x Audio 1 Audio-Only 56
6 3ca9d09e2e 1x Audio-Visual 2 Audio-Visual 48

We want to visualise the response per treatment for each combination of Speed
and Content.Type (which is already combined in the column Condition). We
did this with the emmeans function and stored the treatment means in the object
means! To use it to visualise the treatment means we need to convert to a data
frame, currently it is something called a “emmGrid”
means

Content.Type Speed emmean SE df lower.CL upper.CL
Audio-Only 1 50.3 2.11 196 46.2 54.5
Audio-Visual 1 59.6 2.11 196 55.4 63.7
Audio-Only 2 47.9 2.11 196 43.7 52.0
Audio-Visual 2 53.4 2.11 196 49.2 57.5

Confidence level used: 0.95
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class(means)

[1] "emmGrid"
attr(,"package")
[1] "emmeans"

It is easy to convert the object to a data frame:
means_data <- data.frame(means)

We need to decide which factor will be on the x-axis, let’s do Speed. Below, I
use a new package called ggplot2 to visualise the data. It creates nicer looking
plots and is more intuitive in my opinion. If you want to see how to use base R
to plot this, see the code at the end of this section.
# install.packages("ggplot2")
library(ggplot2)

# Create the ggplot with interaction lines
ggplot(means_data, aes(x = factor(Speed), y = emmean, colour = Content.Type, group = Content.Type)) +
geom_point(size = 3) + # Add points for each Content Type
geom_line(linewidth = 1) + # Connect points with lines
labs(title = "Interaction Plot: Speed vs Content Type",

x = "Speed",
y = "Mean Response") +

scale_y_continuous(limits =c(35,65)) + # to visualse the magnitude a bit better
theme_minimal()
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The aes() function maps Speed to the x-axis, Mean Response to the y-axis, and
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uses Content Type for color and grouping. geom_point(size = 3) adds indi-
vidual data points, while geom_line(size = 1) connects them to show trends.
The labs() function provides axis labels and a title, and theme_minimal()
specifies the theme for the plot.

If you want to know more about
how to visualise data with

ggplot2 have a look at this link.
There are plenty of resources

mentioned.

It is evident that increasing Speed has a negative effect on the response, and
switching from Audio-Visual to Audio-Only content reduces the mean response.
When moving from 1x to 2x Speed in the Audio-Visual condition, the response
decreases. A similar decline is observed for the Audio-Only condition. Although
the decrease appears slightly larger for Audio-Visual than for Audio-Only, the
difference is not substantial enough to conclude a significant interaction effect
between Speed and Content Type as evidenced by the ANOVA and contrasts
we did before.

16.1 Conclusion
# Set up an empty plot
plot(means_data$Speed[means_data$Content.Type == "Audio-Visual"],

means_data$emmean[means_data$Content.Type == "Audio-Visual"],
type = "o",
col = "#F79256",
pch = 16,
ylim = range(means_data$emmean),
xlab = "Speed",
ylab = "Mean Response",
main = "Interaction Plot: Speed vs Content Type",
xaxt = "n")

# - plot(...) initializes the graph using Speed as the x-axis and Mean Response as the y-axis.
# - The subset `means_data$Speed[means_data$ContentType == "Audio-Visual"]` extracts only Audio-Visual data to plot the first line.
# - type = "o" specifies that both points and lines should be drawn.
# - ylim = range(means_data$emmean) ensures that the y-axis spans the full range of data.
# - xaxt = "n" suppresses the default x-axis, allowing for manual customization in the next step.
#
# Since the x-axis represents discrete categories (Speed levels), we manually specify the tick labels with the function `axis` and then we overlay the means for the Audio-Only groups with `points`. Lastly, we add a legend.

# Add x-axis labels manually
axis(1, at = unique(as.numeric(means_data$Speed)), labels = unique(means_data$Speed))

# Add Audio-Only group
points(means_data$Speed[means_data$Content.Type == "Audio-Only"],

means_data$emmean[means_data$Content.Type == "Audio-Only"],
col = "#5BC0EB",
pch = 16,
type = "o")

https://ggplot2.tidyverse.org/
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# Add legend
legend("topright", legend = c("Audio-Visual", "Audio-Only"), col = c("#F79256", "#5BC0EB"), pch = 16, lty = 1)

# OR WITH BUILT IN

interaction.plot(x.factor = means_data$Speed, #x-axis variable
trace.factor = means_data$Content.Type, #variable for lines
response = means_data$emmean, #y-axis variable
fun = mean, #metric to plot
ylab = "Counts",
xlab = "Seasons",
col = c("red", "blue"),
lty = 1, #line type
lwd = 2, #line width
trace.label = "Species")
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